

CODE		CATEGORY	L	Т	Р	CREDIT
MCN201	SUSTAINABLE ENGINEERING		2	0	0	NIL

Preamble: Objective of this course is to inculcate in students an awareness of environmental issues and the global initiatives towards attaining sustainability. The student should realize the potential of technology in bringing in sustainable practices.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the relevance and the concept of sustainability and the global initiatives in this direction
CO 2	Explain the different types of environmental pollution problems and their sustainable solutions
CO 3	Discuss the environmental regulations and standards
CO 4	Outline the concepts related to conventional and non-conventional energy
CO 5	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	РО	PO
			11							10	11	12
CO 1						2	3					2
CO 2		1				2	3					2
CO 3		12.3				2	3					2
CO 4						2	3					2
CO 5						2	3					2

Assessment Pattern

Mark distribution

Bloom's Category	Continuou	s Assessment Tests	End Semester Examination
	1	2	
Remember	20	20	40
Understand	20	20	40
Apply	10	10	20
Analyse	1	and the second	and the second se
Evaluate		and a second	
Create		2014	

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Course Level Assessment Questions

Course Outcome 1 (CO1): Understand the relevance and the concept of sustainability and the global initiatives in this direction

- 1. Explain with an example a technology that has contributed positively to sustainable development.
- 2. Write a note on Millennium Development Goals.

Course Outcome 2 (CO2): Explain the different types of environmental pollution problems and their sustainable solutions

- 1. Explain the 3R concept in solid waste management?
- 2. Write a note on any one environmental pollution problem and suggest a sustainable solution.
- 3. In the absence of green house effect the surface temperature of earth would not have been suitable for survival of life on earth. Comment on this statement.

Course Outcome 3(CO3): Discuss the environmental regulations and standards

- 1. Illustrate Life Cycle Analysis with an example of your choice.
- 2. "Nature is the most successful designer and the most brilliant engineer that has ever evolved". Discuss.

Course Outcome 4 (CO4): Outline the concepts related to conventional and non-conventional energy

- 1. Suggest a sustainable system to generate hot water in a residential building in tropical climate.
- 2. Enumerate the impacts of biomass energy on the environment.

Course Outcome 5 (CO5): Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

1. Suggest suitable measures to make the conveyance facilities used by your institution sustainable.

Model Question paper

Part A

(Answer all questions. Each question carries 3 marks each)

- 1. Define sustainable development.
- 2. Write a short note on Millennium Development Goals.
- 3. Describe carbon credit.
- 4. Give an account of climate change and its effect on environment.
- 5. Describe biomimicry? Give two examples.
- 6. Explain the basic concept of Life Cycle Assessment.
- 7. Name three renewable energy sources.

- 8. Mention some of the disadvantages of wind energy.
- 9. Enlist some of the features of sustainable habitat.
- 10. Explain green engineering.

Part B

(Answer one question from each module. Each question carries 14 marks)

- 11. Discuss the evolution of the concept of sustainability. Comment on its relevance in the modern world.
- 12. Explain Clean Development Mechanism.
- 13. Explain the common sources of water pollution and its harmful effects.

OR

OR

- 14. Give an account of solid waste management in cities.
- 15. Explain the different steps involved in the conduct of Environmental Impact Assessment.

OR

- 16. Suggest some methods to create public awareness on environmental issues.
- 17. Comment on the statement, "Almost all energy that man uses comes from the Sun".

OR

OR

18. Write notes on:

- a. Land degradation due to water logging.
- b. Over exploitation of water.
- 19. Discuss the elements related to sustainable urbanisation.

20. Discuss any three methods by which you can increase energy efficiency in buildings.

Syllabus

Sustainability- need and concept, technology and sustainable development-Natural resources and their pollution, Carbon credits, Zero waste concept. Life Cycle Analysis, Environmental Impact Assessment studies, Sustainable habitat, Green buildings, green materials, Energy, Conventional and renewable sources, Sustainable urbanization, Industrial Ecology.

Module 1

Sustainability: Introduction, concept, evolution of the concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

Module 2

Environmental Pollution: Air Pollution and its effects, Water pollution and its sources, Zero waste concept and 3 R concepts in solid waste management; Greenhouse effect, Global warming, Climate change, Ozone layer depletion, Carbon credits, carbon trading and carbon foot print, legal provisions for environmental protection.

Module 3

Environmental management standards: ISO 14001:2015 frame work and benefits, Scope and goal of Life Cycle Analysis (LCA), Circular economy, Bio-mimicking, Environment Impact Assessment (EIA), Industrial ecology and industrial symbiosis.

Module 4

Resources and its utilisation: Basic concepts of Conventional and non-conventional energy, General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans and Geothermal energy.

Module 5

Sustainability practices: Basic concept of sustainable habitat, Methods for increasing energy efficiency in buildings, Green Engineering, Sustainable Urbanisation, Sustainable cities, Sustainable transport.

Reference Books

- 1. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 2. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
- 3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006
- 4. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998
- 5. ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications GRIHA Rating System
- 6. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
- 7. Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).
- 8. Purohit, S. S., Green Technology An approach for sustainable environment, Agrobios Publication

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Sustainability	
1.1	Introduction, concept, evolution of the concept	1
1.2	Social, environmental and economic sustainability concepts	1
1.3	Sustainable development, Nexus between Technology and Sustainable development	1
1.4	Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs)	AA
1.5	Clean Development Mechanism (CDM)	1.7.1
2	Environmental Pollution	41
2.1	Air Pollution and its effects	1
2.2	Water pollution and its sources	1
2.3	Zero waste concept and 3 R concepts in solid waste management	1
2.4	Greenhouse effect, Global warming, Climate change, Ozone layer depletion	1
2.5	Carbon credits, carbon trading and carbon foot print.	1
2.6	Legal provisions for environmental protection.	1
3	Environmental management standards	
3.1	Environmental management standards	1
3.2	ISO 14001:2015 frame work and benefits	1
3.3	Scope and Goal of Life Cycle Analysis (LCA)	1
3.4	Circular economy, Bio-mimicking	1
3.5	Environment Impact Assessment (EIA)	1
3.6	Industrial Ecology, Industrial Symbiosis	1
4	Resources and its utilisation	
4.1	Basic concepts of Conventional and non-conventional energy	1
4.2	General idea about solar energy, Fuel cells	1
4.3	Wind energy, Small hydro plants, bio-fuels	1
4.4	Energy derived from oceans and Geothermal energy	1
5	Sustainability Practices	17
5.1	Basic concept of sustainable habitat	1
5.2	Methods for increasing energy efficiency of buildings	1
5.3	Green Engineering	1
5.4	Sustainable Urbanisation, Sustainable cities, Sustainable transport	1

27

CODE	COURSE NAME	CATEGORY	L	Т	Ρ	CREDIT
			2	0	0	2
EST 200	DESIGN AND ENGINEERING					

Preamble:

The purpose of this course is to

i) introduce the undergraduate engineering studentsthe fundamental principles of design engineering,

ii) make them understand the steps involved in the design process and

iii) familiarize them with the basic tools used and approaches in design.

Students are expected to apply design thinking in learning as well as while practicing engineering, which is very important and relevant for today. Case studies from various practical situations will help the students realize that design is not only concerned about the function but also many other factors like customer requirements, economics, reliability, etc. along with a variety of life cycle issues.

The course will help students to consider aesthetics, ergonomics and sustainability factors in designs and also to practice professional ethics while designing.

Prerequisite:

Nil.The course will be generic to all engineering disciplines and will not require specialized preparation or prerequisites in any of the individual engineering disciplines.

Course Outcomes:

After the completion of the course the student will be able to

CO 1	Explain the different concepts and principles involved in design engineering.
CO 2	Apply design thinking while learning and practicing engineering.
CO 3	Develop innovative, reliable, sustainable and economically viable designs
	incorporating knowledge in engineering.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	1				14 - P	1			1		
CO 2		2				1		1				2
CO 3			2			1	1		2	2		1

Assessment Pattern

Continuous Internal Evaluation (CIE) Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination (ESE) Pattern: There will be two parts; Part A and Part B.

Part A	ALL ADI	: 30 marks	JT WIN
part B	TTALL	: 70 marks	10 11

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.

Part B contains 2 case study questions from each module of which student should answer any one. Each question carry 14 marks and can have maximum 2 sub questions.

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

2014

Bloom's Category	Continuous Ass	essment Tests	End Semester		
	1	2	Examination		
Remember	5	5	10		
Understand	10	10	20		
Apply	35	35	70		
Analyse	-		- 1		
Evaluate	Er Er	to all the second	-		
Create	1- 60		-		

Course Level Assessment Questions

Course Outcome 1 (CO1): Appreciate the different concepts and principles involved in design engineering.

1. State how engineering design is different from other kinds of design

2. List the different stages in a design process.

3. Describedesign thinking.

4. State the function of prototyping and proofing in engineering design.

5. Write notes on the following concepts in connection with design engineering 1) Modular Design,

2) Life Cycle Design , 3) Value Engineering, 4) Concurrent Engineering, and 5) Reverse Engineering

6. State design rights.

Course Outcome 2 (CO2) Apply design thinking while learning and practicing engineering.

1. Construct the iterative process for design thinking in developing simple products like a pen, umbrella, bag, etc.

2. Show with an example how divergent-convergent thinking helps in generating alternative designs and then how to narrow down to the best design.

3. Describe how a problem-based learning helps in creating better design engineering solutions.

4. Discuss as an engineer, how ethics play a decisive role in your designs

Course Outcome 3(CO3): Develop innovative, reliable, sustainable and economically viable designs incorporating different segments of knowledge in engineering.

1. Illustrate the development of any simple product by passing through the different stages of design process

2014

2. Show the graphical design communication with the help of detailed 2D or 3D drawings for any simple product.

3. Describe how to develop new designs for simple products through bio-mimicry.

Model Question paper

Page 1 of 2

Reg No.:______ Name:_____ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION Course Code: EST 200

Course Name: DESIGN AND ENGINEERING

Max. Marks: 100Duration: 3 Hours

PART A

Answer all questions, each question carries 3 marks Use only hand sketches

(1)Write about the basic design process.

- (2) Describe how to finalize the design objectives.
- (3) State the role of divergent-convergent questioning in design thinking.
- (4) Discuss how to perform design thinking in a team managing the conflicts.
- (5) Show how engineering sketches and drawings convey designs.
- (6)Explain the role of mathematics and physics in design engineering process.
- (7) Distinguish between project-based learning and problem-based learning in design engineering.
- (8) Describe how concepts like value engineering , concurrent engineering and reverse engineering influence engineering designs?
- (9) Show how designs are varied based on the aspects of production methods, life span, reliability and environment?
- (10) Explain how economics influence the engineering designs?

(10x3 marks =30 marks)

Part B

Answer any ONE question from each module. Each question carry 14 marks

Module 1

(11) Show the designing of a wrist watch going through the various stages of the design process. Use hand sketches to illustrate the processes.

or

(12)Find the customer requirements for designing a new car showroom. Show how the design objectives were finalized considering the design constraints?

Module 2

(13)Illustrate the design thinking approach for designing a bag for college students within a limited budget. Describe each stage of the process and the iterative procedure involved. Use hand sketches to support your arguments.

or

(14)Construct a number of possible designs and then refine them to narrow down to the best design for a drug trolley used in hospitals. Show how the divergent-convergent thinking helps in the process. Provide your rationale for each step by using hand sketches only.

Module 3

(15) Graphically communicate the design of a thermo flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.

or

(16)Describe the role of mathematical modelling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters in a construction site.

Module 4

(17) Show the development of a nature inspired design for a solar poweredbus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches to support your arguments.

or

(18)Show the design of a simple sofa and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs.

Module 5

(19)Examine the changes in the design of a foot wear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design.

or

- (20)Describe the how to estimate the cost of a particular design using ANY of the following:i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) anelectrical or electronic system or device and v) a car.
- Show how economics will influence the engineering designs. Use hand sketches to support your arguments.

(5x14 marks =70 marks)

Syllabus

Module 1

<u>Design Process</u>:- Introduction to Design and Engineering Design, Defining a Design Process-:Detailing Customer Requirements, Setting Design Objectives, Identifying Constraints, Establishing Functions, Generating Design Alternatives and Choosing a Design.

Module 2

<u>Design Thinking Approach:-</u>Introduction to Design Thinking, Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment.

Module 3

<u>Design Communication</u> (Languages of Engineering Design):-Communicating Designs Graphically, Communicating Designs Orally and in Writing. Mathematical Modeling In Design, Prototyping and Proofing the Design.

Module 4

<u>Design Engineering Concepts:-</u>Project-based Learning and Problem-based Learning in Design.Modular Design and Life Cycle Design Approaches. Application of Biomimicry,Aesthetics and Ergonomics in Design. Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.

Module 5

Expediency, Economics and Environment in Design Engineering:-Design for Production, Use, and Sustainability. Engineering Economics in Design. Design Rights. Ethics in Design

Estel

2014

Text Books

1) YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285,

2) Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference Books

1.Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.

2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley & Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5

3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361

4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Module 1: Design Process	1
1.1	Introduction to Design and Engineering Design. What does it mean to design something? How Is	
	what does it mean to design something? How is engineering design different from other kinds of design? Where and when do engineers design? What are the basic vocabularyin engineering design? How to learn and do engineering design.	1
1.2	Defining a Design Process-: Detailing Customer Requirements. How to do engineering design? Illustrate the process with an example. How to identify the customer requirements of design?	L 1
1.3	Defining a Design Process-: Setting Design Objectives, Identifying Constraints, Establishing Functions.How to finalize the design objectives? How to identify the design constraints? How to express the functions a design	1
1.4	<i>in engineering terms?</i> <i>Defining a Design Process-</i> : Generating Design Alternatives and Choosing a Design.	1
1.5	How to generate or create feasible design alternatives? How to identify the "best possible design"? Case Studies:- Stages of Design Process. Conduct exercises for designing simple products going	1
2	through the different stages of design process.	
	Module 2: Design Thinking Approach Introduction to Design Thinking	
2.1	How does the design thinking approach help engineers in creating innovative and efficient designs?	1
2.2	Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)?	1
2.3	Design Thinking as Divergent-Convergent Questioning. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'.	1
2.4	Design Thinking in a Team Environment. How to perform design thinking as a team managing the conflicts ?	1
2.5	Case Studies: Design Thinking Approach. Conduct exercises using the design thinking approach for	1

	· · · · · · · · · · · · · · · · · · ·	
	<i>designing any simple products within a limited time and</i> budget	
3	Module 3: Design Communication (Languages of Engineering	Design)
3.1	Communicating Designs Graphically.	1
	How do engineering sketches and drawings convey designs?	1
3.2	Communicating Designs Orally and in Writing.	
	How can a design be communicated through oral	1
	presentation or technical reports efficiently?	4
	First Series Examination	G
3.3	Mathematical Modelling in Design.	
	How do mathematics and physics become a part of the	1
	design process?	50500
3.4	Prototyping and Proofing the Design.	1
	How to predict whether the design will function well or not?	I
3.5	Case Studies: Communicating Designs Graphically.	
	Conduct exercises for design communication through	
	detailed 2D or 3D drawings of simple products with	1
	design detailing, material selection, scale drawings,	
4	dimensions, tolerances, etc.	
4	Module 4: Design Engineering Concepts	1
4.1	Project-based Learning and Problem-based Learning in Design.	1
	How engineering students can learn design engineering	
	through projects?	
	How students can take up problems to learn design	
4.2	engineering? Modular Design and Life Cycle Design Approaches.	1
4.2		1
	What is modular approach in design engineering? How it helps?	
	helps? How the life cycle design approach influences design	
	decisions?	
4.3	Application of Bio-mimicry, Aesthetics and Ergonomics in Design.	1
	How do aesthetics and ergonomics change engineering	
	designs?	
	How do the intelligence in nature inspire engineering	
	designs? What are the common examples of bio-mimicry	
	in engineering?	1
4.4	Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.	1
	How do concepts like value engineering , concurrent	
	engineering and reverse engineering influence	
4 =	engineering designs?	1
4.5	Case Studies: Bio-mimicry based Designs.	1
	Conduct exercises to develop new designs for simple	

	products using bio-mimicry and train students to bring out						
	new nature inspired designs.						
5	Module 5: Expediency, Economics and Environment in Design						
	Engineering						
5.1	Design for Production, Use, and Sustainability.		1				
	How designs are finalized based on the aspects of						
	production methods, life span, reliability and						
	environment?						
5.2	Engineering Economics in Design.	M	1				
	How to estimate the cost of a particular design and how	1.0					
	will economics influence the engineering designs?						
5.3	Design Rights. 1						
	What are design rights and how can an engineer put it						
	into practice?	-					
5.4	Ethics in Design.		1				
	How do ethics play a decisive role in engineering design?						
5.5	Case Studies: Design for Production, Use, and		1				
	Sustainability.						
	Conduct exercises using simple products to show how designs						
	change with constraints of production methods, life span						
	requirement, reliability issues and environmental factors.						
	Second Series Examination						

Code.	Course Name	L	Т	Р	Hrs	Credit
HUT 200	Professional Ethics	2	0	0	2	2

Preamble: To enable students to create awareness on ethics and human values.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to 1.7

CO 1	Understand the core values that shape the ethical behaviour of a professional.					
CO 2	Adopt a good character and follow an ethical life.					
CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.					
CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.					
CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.					

Mapping of course outcomes with program outcomes

1

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1
<u>CO 1</u>	I			11				2		U		2
CO 1 CO 2					-			2			2	
CO 2 CO 3								2			2	
CO 3 CO 4				-	-			3	-	-	2	
CO =								3	1		2	

Assessment Pattern

Bloom's category	Continuous Assessn	End Semester Exam		
	1	2		
Remember	15	15	30	
Understood	20	20	40	
Apply	15	15	30	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	:	10 marks
Continuous Assessment Tests (2 Nos)	:	25 marks
Assignments/Quiz	:	15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Define integrity and point out ethical values.
- 2. Describe the qualities required to live a peaceful life.
- 3. Explain the role of engineers in modern society.

Course Outcome 2 (CO2)

- 1. Derive the codes of ethics.
- 2. Differentiate consensus and controversy.
- 3. Discuss in detail about character and confidence.

Course Outcome 3(CO3):

- 1. Explain the role of professional's ethics in technological development.
- 2. Distinguish between self interest and conflicts of interest.
- 3. Review on industrial standards and legal ethics.

Course Outcome 4 (CO4):

- 1. Illustrate the role of engineers as experimenters.
- 2. Interpret the terms safety and risk.
- 3. Show how the occupational crimes are resolved by keeping the rights of employees.

Course Outcome 5 (CO5):

- 1. Exemplify the engineers as managers.
- 2. Investigate the causes and effects of acid rain with a case study.
- 3. Explorate the need of environmental ethics in technological development.

Model Question paper

QP CODE:	Reg No:
PAGES:3	Name :
B.TECH DEGREE EXAM Course Course Name: PRC Max. Marks: 100 (2019 PA	L UNIVERSITY THIRD/FOURTH SEMESTER INATION, MONTH & YEAR Ode: HUT 200 DFESSIONAL ETHICS Duration: 3 Hours D-Scheme) ART A
` ·	s, each question carries 3 marks)
1. Define empathy and honesty.	
2. Briefly explain about morals, values and e	ethics.
3. Interpret the two forms of self-respect.	
4. List out the models of professional roles.	
5. Indicate the advantages of using standards	3.
6. Point out the conditions required to define	a valid consent?
7. Identify the conflicts of interests with an e	example?
8. Recall confidentiality.	
9. Conclude the features of biometric ethics.	td.
10. Name any three professional societies and	their role relevant to engineers.
	(10x3 = 30 marks)
PAI	ат в
(Answer one full question from each me	odule, each question carries 14 marks)
MODU	JLE I
11. a) Classify the relationship between ethical va	alues and law?

b) Compare between caring and sharing.

(10+4 = 14 marks)

Or

12. a) Exemplify a comprehensive review about integrity and respect for others.

(8+6 = 14 marks)

(8+6 = 14 marks)

(8+6 = 14 marks)

MODULE II

13.a) Explain the three main levels of moral developments, deviced by Kohlberg.

b) Differentiate moral codes and optimal codes. (10+4 = 14 marks)

Or

14. a) Extrapolate the duty ethics and right ethics.

b) Discuss in detail the three types of inquiries in engineering ethics (8+6=14 marks)

MODULE III

15.a) Summarize the following features of morally responsible engineers.

(i) Moral autonomy

(ii) Accountability

b)Explain the rights of employees

Or

16. a) Explain the reasons for Chernobyl mishap?

b) Describe the methods to improve collegiality and loyalty.

MODULE IV

17.a) Execute collegiality with respect to commitment, respect and connectedness.

b) Identify conflicts of interests with an example.

Or

18. a) Explain in detail about professional rights and employee rights.

b) Exemplify engineers as managers.

MODULE V

19.a) Evaluate the technology transfer and appropriate technology.

b) Explain about computer and internet ethics.

(8+6 = 14 marks)

Or

20. a) Investigate the causes and effects of acid rain with a case study.

b) Conclude the features of ecocentric and biocentric ethics. (8+6 = 14 marks)

HUMANITIES

<u>Syllabus</u>

Module 1 – Human Values.

Morals, values and Ethics – Integrity- Academic integrity-Work Ethics- Service Learning- Civic Virtue-Respect for others- Living peacefully- Caring and Sharing- Honestly- courage-Cooperation commitment-Empathy-Self Confidence -Social Expectations.

Module 2 - Engineering Ethics & Professionalism.

Senses of Engineering Ethics - Variety of moral issues- Types of inquiry- Moral dilemmas –Moral Autonomy – Kohlberg's theory- Gilligan's theory- Consensus and Controversy-Profession and Professionalism- Models of professional roles-Theories about right action –Self interest-Customs and Religion- Uses of Ethical Theories.

Module 3- Engineering as social Experimentation.

Engineering as Experimentation – Engineers as responsible Experimenters- Codes of Ethics- Plagiarism-A balanced outlook on law - Challenges case study- Bhopal gas tragedy.

Module 4- Responsibilities and Rights.

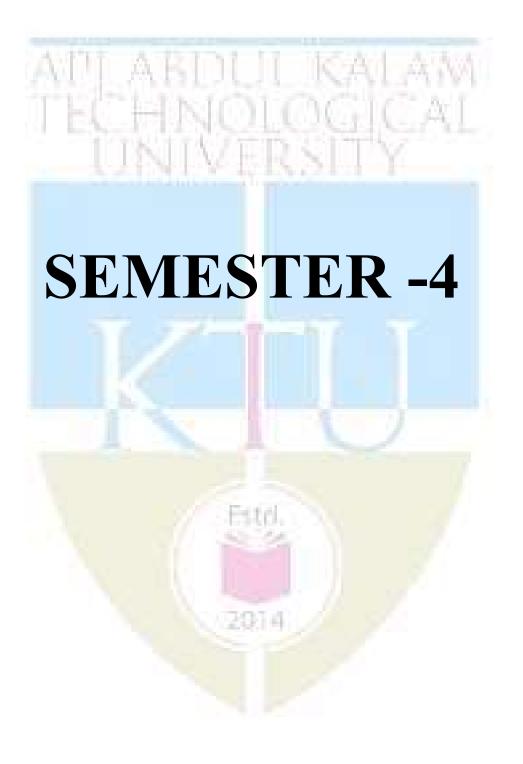
Collegiality and loyalty – Managing conflict- Respect for authority- Collective bargaining- Confidentiality-Role of confidentiality in moral integrity-Conflicts of interest- Occupational crime- Professional rights-Employee right- IPR Discrimination.

Module 5- Global Ethical Issues.

Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics -Role in Technological Development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors-Moral leadership.

Text Book

- 1. M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi,2012.
- 2. R S Naagarazan, A text book on professional ethics and human values, New age international (P) limited ,New Delhi,2006.


2014

Reference Books

- 1. Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014.
- 2. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- 3. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states, 2005.
- 4. http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

Course Contents and Lecture Schedule

SL.N	Торіс	No. of Lectures		
0		25		
1	Module 1 – Human Values.			
1.1	Morals, values and Ethics, Integrity, Academic Integrity, Work Ethics	1		
1.2	Service Learning, Civic Virtue, Respect for others, Living peacefully	1		
1.3	Caring and Sharing, Honesty, Courage, Co-operation commitment	2		
1.4	Empathy, Self Confidence, Social Expectations	1		
2	Module 2- Engineering Ethics & Professionalism.	-		
2.1	Senses of Engineering Ethics, Variety of moral issues, Types of inquiry	1		
2.2	Moral dilemmas, Moral Autonomy, Kohlberg's theory	1		
2.3	Gilligan's theory, Consensus and Controversy, Profession& Professionalism, Models of professional roles, Theories about right action	2		
2.4	Self interest-Customs and Religion, Uses of Ethical Theories	1		
3	Module 3- Engineering as social Experimentation.			
3.1	Engineering as Experimentation, Engineers as responsible Experimenters	1		
3.2	Codes of Ethics, Plagiarism, A balanced outlook on law	2		
3.3	Challenger case study, Bhopal gas tragedy	2		
4	Module 4- Responsibilities and Rights.			
4.1	Collegiality and loyalty, Managing conflict, Respect for authority	1		
4.2	Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Conflicts of interest	2		
4.3	Occupational crime, Professional rights, Employee right, IPR Discrimination	2		
5	Module 5- Global Ethical Issues.	10.		
5.1	Multinational Corporations, Environmental Ethics, Business Ethics, Computer Ethics	2		
5.2	Role in Technological Development, Moral leadership	1		
5.3	Engineers as Managers, Consulting Engineers, Engineers as Expert witnesses and advisors	2		

CODE	COURSE NAME	COURSE NAME					CREDIT
MCN202	CONSTITUTION OF INDIA			2	0	0	NIL

Preamble:

The study of their own country constitution and studying the importance environment as well as understanding their own human rights help the students to concentrate on their day to day discipline. It also gives the knowledge and strength to face the society and people.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the background of the present constitution of India and features.
CO 2	Utilize the fundamental rights and duties.
CO 3	Understand the working of the union executive, parliament and judiciary.
CO 4	Understand the working of the state executive, legislature and judiciary.
CO 5	Utilize the special provisions and statutory institutions.
CO 6	Show national and patriotic spirit as responsible citizens of the country

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9		РО	РО
		1.00								10	11	12
CO 1					1	2	2	2		2		
CO 2						3	3	3		3		
CO 3					0.1	3	2	3		3		
CO 4						3	2	3		3		
CO 5						3	2	3	100	3		
CO 6					A	3	3	3	1	2		

Assessment Pattern

Bloom's Category	Continuous Tests	Assessment	End Semester Examination
	1	2	
Remember	20	20	40
Understand	20	20	40
Apply	10	10	20
Analyse			

Evaluate		
Create		

Mark distribution

Total	CIE	ESE	ESE Dura	tion
Marks	A T	A TC	DEN	- T
150	50	100	3 hours	U
	T		-M	7
Continuou	s Internal	Evaluation	n Pattern:	Ē
Attendance	e	340.0		: 10
Continuous	s Assessm	ent Test (2	numbers)	: 25
Assignmen	t/Quiz/Co	urse proje	ct	: 15

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1 Discuss the historical background of the Indian constitution.
- 2 Explain the salient features of the Indian constitution.
- 3 Discuss the importance of preamble in the implementation of constitution.

Course Outcome 2 (CO2)

- 1 What are fundamental rights ? Examine each of them.
- 2 Examine the scope of freedom of speech and expression underlying the constitution.
- 3 The thumb impression of an accused is taken by the police against his will. He contends

that this is a violation of his rights under Art 20(3) of the constitution. Decide.

Course Outcome 3(CO3):

1 Explain the powers of the President to suspend the fundamental rights during emergency.

- 2 Explain the salient features of appeal by special leave.
- 3. List the constitutional powers of President.

Course Outcome 4 (CO4):

- 1 Discuss the constitutional powers of Governor.
- 2 Examine the writ jurisdiction of High court.
- 3 Discuss the qualification and disqualification of membership of state legislature.

Course Outcome 5 (CO5):

- 1 Discuss the duties and powers of comptroller of auditor general.
- 2 Discuss the proclamation of emergency.
- 3 A state levies tax on motor vehicles used in the state, for the purpose of maintaining roads
 - in the state. X challenges the levy of the tax on the ground that it violates the freedom of

interstate commerce guaranteed under Art 301. Decide.

Course Outcome 6 (CO6):

- 1 Explain the advantages of citizenship.
- 2 List the important principles contained in the directive principles of state policy.
- 3 Discuss the various aspects contained in the preamble of the constitution

Model Question paper

PART A

(Answer all questions. Each question carries 3 marks)

- 1 Define and explain the term constitution.
- 2 Explain the need and importance of Preamble.
- 3 What is directive principle of state policy?
- 4 Define the State.
- 5 List the functions of Attorney general of India.

10X3=30marks)

- 6 Explain the review power of Supreme court.
- 7 List the qualifications of Governor.
- 8 Explain the term and removal of Judges in High court.
- 9 Explain the powers of public service commission.
- 10 List three types of emergency under Indian constitution.

11 Discuss the various methods of acquiring Indian citizenship.

12 Examine the salient features of the Indian constitution.

Module 2

PART B

Module 1

(Answer on question from each module. Each question carries 14 marks)

13 A high court passes a judgement against X. X desires to file a writ petition in the supreme

court under Art32, on the ground that the judgement violates his fundamental rights.

Advise him whether he can do so.

14 What is meant by directive principles of State policy? List the directives.

Module3

- 15 Describe the procedure of election and removal of the President of India.
- 16 Supreme court may in its discretion grant special leave to appeal. Examine the situation.

Module 4

17 Discuss the powers of Governor.

18 X filed a writ petition under Art 226 which was dismissed. Subsequently, he filed a writ petition under Art 32 of the constitution, seeking the same remedy. The Government argued that the writ petition should be dismissed, on the ground of res judicata. Decide.

Module 5

19 Examine the scope of the financial relations between the union and the states.

20 Discuss the effects of proclamation of emergency.

(14X5=70marks)

APLAByllabusUL KALAM

Module 1 Definition, historical back ground, features, preamble, territory, citizenship.Module 2 State, fundamental rights, directive principles, duties.

Module 3 The machinery of the union government.

Module 4 Government machinery in the states

Module 5 The federal system, Statutory Institutions, miscellaneous provisions.

Text Books

1 D D Basu, Introduction to the constitution of India, Lexis Nexis, New Delhi, 24e, 2019

2 PM Bhakshi, The constitution of India, Universal Law, 14e, 2017

Reference Books

1 Ministry of law and justice, The constitution of India, Govt of India, New Delhi, 2019.

2 JN Pandey, The constitutional law of India, Central Law agency, Allahabad, 51e, 2019

3 MV Pylee, India's Constitution, S Chand and company, New Delhi, 16e, 2016

Course Contents and Lecture Schedule

No	Topic 2014	No. of Lectures
1	Module 1	
1.1	Definition of constitution, historical back ground, salient features	1
	of the constitution.	
1.2	Preamble of the constitution, union and its territory.	1
1.3	Meaning of citizenship, types, termination of citizenship.	2
2	Module 2	
2.1	Definition of state, fundamental rights, general nature,	2
	classification, right to equality ,right to freedom , right against	
	exploitation	

2.2	Right to freedom of religion, cultural and educational rights, right	2
	to constitutional remedies. Protection in respect of conviction for	
	offences.	
2.3	Directive principles of state policy, classification of directives,	2
	fundamental duties.	
3	Module 3	
3.1	The Union executive, the President, the vice President, the	2
	council of ministers, the Prime minister, Attorney-General, 🖉	A
	functions.	5 A
3.2	The parliament, composition, Rajya sabha, Lok sabha,	2
	qualification and disqualification of membership, functions of	3776 B
	parliament.	
3.3	Union judiciary, the supreme court, jurisdiction, appeal by special	1
5.5	leave.	1
4	Module 4	
4.1	The State executive, the Governor, the council of ministers, the	2
4.1	Chief minister, advocate general, union Territories.	2
4.2	The State Legislature, composition, qualification and	2
4.2	disqualification of membership, functions.	2
4.3	The state judiciary, the high court, jurisdiction, writs jurisdiction.	1
4.5 5	Module 5	1
		1
5.1	Relations between the Union and the States, legislative relation,	1
	administrative relation, financial Relations, Inter State council,	
F 2	finance commission.	2
5.2	Emergency provision, freedom of trade commerce and inter	2
	course, comptroller and auditor general of India, public Services,	
	public service commission, administrative Tribunals.	
5.3	Official language, elections, special provisions relating to certain	2
	classes, amendment of the Constitution.	

CODE	COURSE NAME	CATEGORY	L	Т	Ρ	CREDIT
			2	0	0	2
EST 200	DESIGN AND ENGINEERING					

Preamble:

The purpose of this course is to

i) introduce the undergraduate engineering studentsthe fundamental principles of design engineering,

ii) make them understand the steps involved in the design process and

iii) familiarize them with the basic tools used and approaches in design.

Students are expected to apply design thinking in learning as well as while practicing engineering, which is very important and relevant for today. Case studies from various practical situations will help the students realize that design is not only concerned about the function but also many other factors like customer requirements, economics, reliability, etc. along with a variety of life cycle issues.

The course will help students to consider aesthetics, ergonomics and sustainability factors in designs and also to practice professional ethics while designing.

Prerequisite:

Nil.The course will be generic to all engineering disciplines and will not require specialized preparation or prerequisites in any of the individual engineering disciplines.

Course Outcomes:

After the completion of the course the student will be able to

CO 1	Explain the different concepts and principles involved in design engineering.							
CO 2	Apply design thinking while learning and practicing engineering.							
CO 3	Develop innovative, reliable, sustainable and economically viable designs							
	incorporating knowledge in engineering.							

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	1				14 - P	1			1		
CO 2		2				1		1				2
CO 3			2			1	1		2	2		1

Assessment Pattern

Continuous Internal Evaluation (CIE) Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination (ESE) Pattern: There will be two parts; Part A and Part B.

Part A	ALL ADI	: 30 marks	JT WIN
part B	TTALL	: 70 marks	10 11

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.

Part B contains 2 case study questions from each module of which student should answer any one. Each question carry 14 marks and can have maximum 2 sub questions.

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

2014

Bloom's Category	Continuous Assessment Tests		End Semester	
	1	2	Examination	
Remember	5	5	10	
Understand	10	10	20	
Apply	35	35	70	
Analyse	-		- 1	
Evaluate	Er Er	to all the second	-	
Create	1- 60		-	

Course Level Assessment Questions

Course Outcome 1 (CO1): Appreciate the different concepts and principles involved in design engineering.

1. State how engineering design is different from other kinds of design

2. List the different stages in a design process.

3. Describedesign thinking.

4. State the function of prototyping and proofing in engineering design.

5. Write notes on the following concepts in connection with design engineering 1) Modular Design,

2) Life Cycle Design , 3) Value Engineering, 4) Concurrent Engineering, and 5) Reverse Engineering

6. State design rights.

Course Outcome 2 (CO2) Apply design thinking while learning and practicing engineering.

1. Construct the iterative process for design thinking in developing simple products like a pen, umbrella, bag, etc.

2. Show with an example how divergent-convergent thinking helps in generating alternative designs and then how to narrow down to the best design.

3. Describe how a problem-based learning helps in creating better design engineering solutions.

4. Discuss as an engineer, how ethics play a decisive role in your designs

Course Outcome 3(CO3): Develop innovative, reliable, sustainable and economically viable designs incorporating different segments of knowledge in engineering.

1. Illustrate the development of any simple product by passing through the different stages of design process

2014

2. Show the graphical design communication with the help of detailed 2D or 3D drawings for any simple product.

3. Describe how to develop new designs for simple products through bio-mimicry.

Model Question paper

Page 1 of 2

Reg No.:______ Name:_____ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION Course Code: EST 200

Course Name: DESIGN AND ENGINEERING

Max. Marks: 100Duration: 3 Hours

PART A

Answer all questions, each question carries 3 marks Use only hand sketches

(1)Write about the basic design process.

- (2) Describe how to finalize the design objectives.
- (3) State the role of divergent-convergent questioning in design thinking.
- (4) Discuss how to perform design thinking in a team managing the conflicts.
- (5) Show how engineering sketches and drawings convey designs.
- (6)Explain the role of mathematics and physics in design engineering process.
- (7) Distinguish between project-based learning and problem-based learning in design engineering.
- (8) Describe how concepts like value engineering , concurrent engineering and reverse engineering influence engineering designs?
- (9) Show how designs are varied based on the aspects of production methods, life span, reliability and environment?
- (10) Explain how economics influence the engineering designs?

(10x3 marks =30 marks)

Part B

Answer any ONE question from each module. Each question carry 14 marks

Module 1

(11) Show the designing of a wrist watch going through the various stages of the design process. Use hand sketches to illustrate the processes.

or

(12)Find the customer requirements for designing a new car showroom. Show how the design objectives were finalized considering the design constraints?

Module 2

(13)Illustrate the design thinking approach for designing a bag for college students within a limited budget. Describe each stage of the process and the iterative procedure involved. Use hand sketches to support your arguments.

or

(14)Construct a number of possible designs and then refine them to narrow down to the best design for a drug trolley used in hospitals. Show how the divergent-convergent thinking helps in the process. Provide your rationale for each step by using hand sketches only.

Module 3

(15) Graphically communicate the design of a thermo flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.

or

(16)Describe the role of mathematical modelling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters in a construction site.

Module 4

(17) Show the development of a nature inspired design for a solar poweredbus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches to support your arguments.

or

(18)Show the design of a simple sofa and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs.

Module 5

(19)Examine the changes in the design of a foot wear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design.

or

- (20)Describe the how to estimate the cost of a particular design using ANY of the following:i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) anelectrical or electronic system or device and v) a car.
- Show how economics will influence the engineering designs. Use hand sketches to support your arguments.

(5x14 marks =70 marks)

Syllabus

Module 1

<u>Design Process</u>:- Introduction to Design and Engineering Design, Defining a Design Process-:Detailing Customer Requirements, Setting Design Objectives, Identifying Constraints, Establishing Functions, Generating Design Alternatives and Choosing a Design.

Module 2

<u>Design Thinking Approach:-</u>Introduction to Design Thinking, Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment.

Module 3

<u>Design Communication</u> (Languages of Engineering Design):-Communicating Designs Graphically, Communicating Designs Orally and in Writing. Mathematical Modeling In Design, Prototyping and Proofing the Design.

Module 4

<u>Design Engineering Concepts:-</u>Project-based Learning and Problem-based Learning in Design.Modular Design and Life Cycle Design Approaches. Application of Biomimicry,Aesthetics and Ergonomics in Design. Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.

Module 5

Expediency, Economics and Environment in Design Engineering:-Design for Production, Use, and Sustainability. Engineering Economics in Design. Design Rights. Ethics in Design

Estel

2014

Text Books

1) YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285,

2) Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference Books

1.Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.

2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley & Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5

3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361

4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Module 1: Design Process	1
1.1	Introduction to Design and Engineering Design. What does it mean to design something? How Is	
	what does it mean to design something? How is engineering design different from other kinds of design? Where and when do engineers design? What are the basic vocabularyin engineering design? How to learn and do engineering design.	1
1.2	Defining a Design Process-: Detailing Customer Requirements. How to do engineering design? Illustrate the process with an example. How to identify the customer requirements of design?	L 1
1.3	Defining a Design Process-: Setting Design Objectives, Identifying Constraints, Establishing Functions.How to finalize the design objectives? How to identify the design constraints? How to express the functions a design	1
1.4	<i>in engineering terms?</i> <i>Defining a Design Process-</i> : Generating Design Alternatives and Choosing a Design.	1
1.5	How to generate or create feasible design alternatives? How to identify the "best possible design"? Case Studies:- Stages of Design Process. Conduct exercises for designing simple products going	1
2	through the different stages of design process.	
	Module 2: Design Thinking Approach Introduction to Design Thinking	
2.1	How does the design thinking approach help engineers in creating innovative and efficient designs?	1
2.2	Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)?	1
2.3	Design Thinking as Divergent-Convergent Questioning. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'.	1
2.4	Design Thinking in a Team Environment. How to perform design thinking as a team managing the conflicts ?	1
2.5	Case Studies: Design Thinking Approach. Conduct exercises using the design thinking approach for	1

	F	
	<i>designing any simple products within a limited time and</i> budget	
3	Module 3: Design Communication (Languages of Engineering	Design)
3.1	Communicating Designs Graphically.	1
	How do engineering sketches and drawings convey designs?	1
3.2	Communicating Designs Orally and in Writing.	
	How can a design be communicated through oral	1
	presentation or technical reports efficiently?	1
	First Series Examination	<u>a</u>
3.3	Mathematical Modelling in Design.	1
	How do mathematics and physics become a part of the	1
	design process?	50-000
3.4	Prototyping and Proofing the Design.	1
	How to predict whether the design will function well or not?	1
3.5	Case Studies: Communicating Designs Graphically.	
	Conduct exercises for design communication through	
	detailed 2D or 3D drawings of simple products with	1
	design detailing, material selection, scale drawings,	
4	dimensions, tolerances, etc.	
4	Module 4: Design Engineering Concepts	
4.1	Project-based Learning and Problem-based Learning in Design.	1
	How engineering students can learn design engineering	
	through projects?	
	How students can take up problems to learn design	
4.2	engineering? Modular Design and Life Cycle Design Approaches.	1
4.2		1
	What is modular approach in design engineering? How it	
	helps? How the life cycle design approach influences design	
	decisions?	
4.3	Application of Bio-mimicry, Aesthetics and Ergonomics in Design.	1
	How do aesthetics and ergonomics change engineering	
	designs?	
	<i>How do the intelligence in nature inspire engineering</i>	
	designs? What are the common examples of bio-mimicry	
	in engineering?	
4.4	Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.	1
	How do concepts like value engineering, concurrent	
	engineering and reverse engineering influence	
	engineering designs?	
4.5	Case Studies: Bio-mimicry based Designs.	1
	Conduct exercises to develop new designs for simple	

HUMANITIES

	products using bio-mimicry and train students to bring out									
	new nature inspired designs.									
5	Module 5: Expediency, Economics and Environment in Desig	<u>yn</u>								
	Engineering									
5.1	Design for Production, Use, and Sustainability.		1							
	How designs are finalized based on the aspects of									
	production methods, life span, reliability and									
	environment?									
5.2	Engineering Economics in Design.	M	1							
	How to estimate the cost of a particular design and how	1.0								
	will economics influence the engineering designs?									
5.3	Design Rights.		1							
	What are design rights and how can an engineer put it									
	into practice?	-								
5.4	Ethics in Design.		1							
	How do ethics play a decisive role in engineering design?									
5.5	Case Studies: Design for Production, Use, and		1							
	Sustainability.									
	Conduct exercises using simple products to show how designs									
	change with constraints of production methods, life span									
	requirement, reliability issues and environmental factors.									
	Second Series Examination									

Code.	Course Name	L	Т	Р	Hrs	Credit
HUT 200	Professional Ethics	2	0	0	2	2

Preamble: To enable students to create awareness on ethics and human values.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to 1.7

CO 1	Understand the core values that shape the ethical behaviour of a professional.								
CO 2	Adopt a good character and follow an ethical life.								
CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.								
CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.								
CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.								

Mapping of course outcomes with program outcomes

1

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1
<u>CO 1</u>	I			11				2		U		2
CO 1 CO 2					-			2			2	
CO 2 CO 3								2			2	
CO 3 CO 4				-	-			3		-	2	
CO =								3	1		2	

Assessment Pattern

Bloom's category	Continuous Assessn	End Semester Exam		
	1	2		
Remember	15	15	30	
Understood	20	20	40	
Apply	15	15	30	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	:	10 marks
Continuous Assessment Tests (2 Nos)	:	25 marks
Assignments/Quiz	:	15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Define integrity and point out ethical values.
- 2. Describe the qualities required to live a peaceful life.
- 3. Explain the role of engineers in modern society.

Course Outcome 2 (CO2)

- 1. Derive the codes of ethics.
- 2. Differentiate consensus and controversy.
- 3. Discuss in detail about character and confidence.

Course Outcome 3(CO3):

- 1. Explain the role of professional's ethics in technological development.
- 2. Distinguish between self interest and conflicts of interest.
- 3. Review on industrial standards and legal ethics.

Course Outcome 4 (CO4):

- 1. Illustrate the role of engineers as experimenters.
- 2. Interpret the terms safety and risk.
- 3. Show how the occupational crimes are resolved by keeping the rights of employees.

Course Outcome 5 (CO5):

- 1. Exemplify the engineers as managers.
- 2. Investigate the causes and effects of acid rain with a case study.
- 3. Explorate the need of environmental ethics in technological development.

Model Question paper

QP CODE:	Reg No:
PAGES:3	Name :
B.TECH DEGREE EXAM Course Co Course Name: PRC (2019 PA	L UNIVERSITY THIRD/FOURTH SEMESTER INATION, MONTH & YEAR Ode: HUT 200 DFESSIONAL ETHICS Duration: 3 Hours D-Scheme) ART A
` ·	s, each question carries 3 marks)
1. Define empathy and honesty.	
2. Briefly explain about morals, values and e	ethics.
3. Interpret the two forms of self-respect.	
4. List out the models of professional roles.	
5. Indicate the advantages of using standards	3.
6. Point out the conditions required to define	a valid consent?
7. Identify the conflicts of interests with an e	example?
8. Recall confidentiality.	
9. Conclude the features of biometric ethics.	td.
10. Name any three professional societies and	their role relevant to engineers.
	(10x3 = 30 marks)
PAI	ат в
(Answer one full question from each me	odule, each question carries 14 marks)
MODU	JLE I
11. a) Classify the relationship between ethical va	alues and law?

b) Compare between caring and sharing.

(10+4 = 14 marks)

Or

12. a) Exemplify a comprehensive review about integrity and respect for others.

(8+6 = 14 marks)

(8+6 = 14 marks)

(8+6 = 14 marks)

MODULE II

13.a) Explain the three main levels of moral developments, deviced by Kohlberg.

b) Differentiate moral codes and optimal codes. (10+4 = 14 marks)

Or

14. a) Extrapolate the duty ethics and right ethics.

b) Discuss in detail the three types of inquiries in engineering ethics (8+6=14 marks)

MODULE III

15.a) Summarize the following features of morally responsible engineers.

(i) Moral autonomy

(ii) Accountability

b)Explain the rights of employees

Or

16. a) Explain the reasons for Chernobyl mishap?

b) Describe the methods to improve collegiality and loyalty.

MODULE IV

17.a) Execute collegiality with respect to commitment, respect and connectedness.

b) Identify conflicts of interests with an example.

Or

18. a) Explain in detail about professional rights and employee rights.

b) Exemplify engineers as managers.

MODULE V

19.a) Evaluate the technology transfer and appropriate technology.

b) Explain about computer and internet ethics.

(8+6 = 14 marks)

Or

20. a) Investigate the causes and effects of acid rain with a case study.

b) Conclude the features of ecocentric and biocentric ethics. (8+6 = 14 marks)

HUMANITIES

<u>Syllabus</u>

Module 1 – Human Values.

Morals, values and Ethics – Integrity- Academic integrity-Work Ethics- Service Learning- Civic Virtue-Respect for others- Living peacefully- Caring and Sharing- Honestly- courage-Cooperation commitment-Empathy-Self Confidence -Social Expectations.

Module 2 - Engineering Ethics & Professionalism.

Senses of Engineering Ethics - Variety of moral issues- Types of inquiry- Moral dilemmas –Moral Autonomy – Kohlberg's theory- Gilligan's theory- Consensus and Controversy-Profession and Professionalism- Models of professional roles-Theories about right action –Self interest-Customs and Religion- Uses of Ethical Theories.

Module 3- Engineering as social Experimentation.

Engineering as Experimentation – Engineers as responsible Experimenters- Codes of Ethics- Plagiarism-A balanced outlook on law - Challenges case study- Bhopal gas tragedy.

Module 4- Responsibilities and Rights.

Collegiality and loyalty – Managing conflict- Respect for authority- Collective bargaining- Confidentiality-Role of confidentiality in moral integrity-Conflicts of interest- Occupational crime- Professional rights-Employee right- IPR Discrimination.

Module 5- Global Ethical Issues.

Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics -Role in Technological Development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors-Moral leadership.

Text Book

- 1. M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi,2012.
- 2. R S Naagarazan, A text book on professional ethics and human values, New age international (P) limited ,New Delhi,2006.

2014

Reference Books

- 1. Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014.
- 2. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- 3. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states, 2005.
- 4. http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

HUMANITIES

Course Contents and Lecture Schedule

SL.N	Торіс	No. of Lectures		
0		25		
1	Module 1 – Human Values.			
1.1	Morals, values and Ethics, Integrity, Academic Integrity, Work Ethics	1		
1.2	Service Learning, Civic Virtue, Respect for others, Living peacefully	1		
1.3	Caring and Sharing, Honesty, Courage, Co-operation commitment	2		
1.4	Empathy, Self Confidence, Social Expectations	1		
2	Module 2- Engineering Ethics & Professionalism.	-		
2.1	Senses of Engineering Ethics, Variety of moral issues, Types of inquiry	1		
2.2	Moral dilemmas, Moral Autonomy, Kohlberg's theory	1		
2.3	Gilligan's theory, Consensus and Controversy, Profession& Professionalism, Models of professional roles, Theories about right action	2		
2.4	Self interest-Customs and Religion, Uses of Ethical Theories	1		
3	Module 3- Engineering as social Experimentation.			
3.1	Engineering as Experimentation, Engineers as responsible Experimenters	1		
3.2	Codes of Ethics, Plagiarism, A balanced outlook on law	2		
3.3	Challenger case study, Bhopal gas tragedy	2		
4	Module 4- Responsibilities and Rights.			
4.1	Collegiality and loyalty, Managing conflict, Respect for authority	1		
4.2	Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Conflicts of interest	2		
4.3	Occupational crime, Professional rights, Employee right, IPR Discrimination	2		
5	Module 5- Global Ethical Issues.	10.		
5.1	Multinational Corporations, Environmental Ethics, Business Ethics, Computer Ethics	2		
5.2	Role in Technological Development, Moral leadership	1		
5.3	Engineers as Managers, Consulting Engineers, Engineers as Expert witnesses and advisors	2		

<u>COMMON COURSES</u> (S5 & S6)

Estd.

2014

MCN	DISASTER MANAGEMENT	Category	L	Т	Р	CREDIT	YEAR OF INTRODUCTION	
301		Non - Credit	2	0	0	Nil	2019	

Preamble: The objective of this course is to introduce the fundamental concepts of hazards and disaster management.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Define and use various terminologies in use in disaster management parlance and organise each of these terms in relation to the disaster management cycle (Cognitive knowledge level: Understand).
CO2	Distinguish between different hazard types and vulnerability types and do vulnerability assessment (Cognitive knowledge level: Understand).
CO3	Identify the components and describe the process of risk assessment, and apply appropriate methodologies to assess risk (Cognitive knowledge level: Understand).
CO4	Explain the core elements and phases of Disaster Risk Management and develop possible measures to reduce disaster risks across sector and community (Cognitive knowledge level: Apply)
CO5	Identify factors that determine the nature of disaster response and discuss the various disaster response actions (Cognitive knowledge level: Understand).
CO6	Explain the various legislations and best practices for disaster management and risk reduction at national and international level (Cognitive knowledge level: Understand).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO1 1	PO1 2
C01		2				2				2		2
CO2	2	3	2		2	2	3			3		2
CO3	2	3	2	2	2	2	3			3		2
CO4	3	3	3		2	2	3					2
CO5	3	3			2	2	3					2
CO6	3					2	3	3				2

Mapping of course outcomes with program outcomes

Abstract POs defined by National Board of Accreditation							
PO#	Broad PO	Broad PO					
PO1	Engineering Knowledge	PO7	Environment and Sustainability				
PO2	Problem Analysis	PO8	Ethics				
PO3	Design/Development of solutions	PO9	Individual and team work				
PO4	Conduct investigations of complex problems	PO10	Communication				
PO5	Modern tool usage	PO11	Project Management and Finance				
PO6	The Engineer and Society	PO12	Life long learning				

Assessment Pattern

Bloom's Category	Continuous A	ssessment Tests	End Semester
	Test 1 (Marks)	Test 2 (Marks)	Examination Marks
Remember	10	10	20
Understand	25	25	50
Apply	15	15	30
Analyze			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration		
150	50	100	3 hours		

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test	: 25 marks

Continuous Assessment - Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A.

Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

MCN 301 Disaster Management

Module 1

Systems of earth

Lithosphere- composition, rocks, soils; Atmosphere-layers, ozone layer, greenhouse effect, weather, cyclones, atmospheric circulations, Indian Monsoon; hydrosphere- Oceans, inland water bodies; biosphere

Definition and meaning of key terms in Disaster Risk Reduction and Management- disaster, hazard, exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, disaster risk management, early warning systems, disaster preparedness, disaster prevention, disaster mitigation, disaster response, damage assessment, crisis counselling, needs assessment.

Module 2

Hazard types and hazard mapping; Vulnerability types and their assessment- physical, social, economic and environmental vulnerability.

Disaster risk assessment –approaches, procedures

Module 3

Disaster risk management -Core elements and phases of Disaster Risk Management

Measures for Disaster Risk Reduction – prevention, mitigation, and preparedness.

Disaster response- objectives, requirements; response planning; types of responses.

Relief; international relief organizations.

Module 4

Participatory stakeholder engagement; Disaster communication- importance, methods, barriers; Crisis counselling

Capacity Building: Concept – Structural and Non-structural Measures, Capacity Assessment; Strengthening Capacity for Reducing Risk

Module 5

Common disaster types in India; Legislations in India on disaster management; National disaster management policy; Institutional arrangements for disaster management in India.

The Sendai Framework for Disaster Risk Reduction- targets, priorities for action, guiding principles

Reference Text Book

- 1. R. Subramanian, Disaster Management, Vikas Publishing House, 2018
- 2. M. M. Sulphey, Disaster Management, PHI Learning, 2016
- 3. UNDP, Disaster Risk Management Training Manual, 2016

4. United Nations Office for Disaster Risk Reduction, Sendai Framework for Disaster Risk Reduction 2015-2030, 2015

Sample Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. What is the mechanism by which stratospheric ozone protects earth from harmful UV rays?
- 2. What are disasters? What are their causes?
- 3. Explain the different types of cyclones and the mechanism of their formation
- 4. Explain with examples, the difference between hazard and risk in the context of disaster management
- 5. Explain the following terms in the context of disaster management (a) exposure (b) resilience (c) disaster risk management (d) early warning systems, (e) damage assessment (f) crisis counselling (g) needs assessment

Course Outcome 2 (CO2):

- 1. What is hazard mapping? What are its objectives?
- 2. What is participatory hazard mapping? How is it conducted? What are its advantages?
- 3. Explain the applications of hazard maps
- 4. Explain the types of vulnerabilities and the approaches to assess them

Course Outcome 3 (CO3):

1. Explain briefly the concept of 'disaster risk'

- 2. List the strategies for disaster risk management 'before', 'during' and 'after' a disaster
- 3. What is disaster preparedness? Explain the components of a comprehensive disaster preparedness strategy

Course Outcome 4 (CO4):

- 1. What is disaster prevention? Distinguish it from disaster mitigation giving examples
- 2. What are the steps to effective disaster communication? What are the barriers to communication?
- 3. Explain capacity building in the context of disaster management

Course Outcome 5 (CO5):

- 1. Briefly explain the levels of stakeholder participation in the context of disaster risk reduction
- 2. Explain the importance of communication in disaster management
- 3. Explain the benefits and costs of stakeholder participation in disaster management
- 4. How are stakeholders in disaster management identified?

Course Outcome 6 (CO6):

- 1. Explain the salient features of the National Policy on Disaster Management in India
- 2. Explain the guiding principles and priorities of action according to the Sendai Framework for Disaster Risk Reduction
- 3. What are Tsunamis? How are they caused?
- 4. Explain the earthquake zonation of India

Model Question paper

OP CODE:

Reg No:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: MCN 301

Course Name: Disaster Management

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

- What is the mechanism by which stratospheric ozone protects earth from harmful UV 1. rays?
- 2 What are disasters? What are their causes?
- 3. What is hazard mapping? What are its objectives?
- Explain briefly the concept of 'disaster risk' 4.
- 5. List the strategies for disaster risk management 'before', 'during' and 'after' a disaster
- 6. What is disaster prevention? Distinguish it from disaster mitigation giving examples
- Briefly explain the levels of stakeholder participation in the context of disaster risk 7. reduction
- 8. Explain the importance of communication in disaster management
- 9. What are Tsunamis? How are they caused?
- 10. Explain the earthquake zonation of India

Part B

Answer any one Question from each module. Each question carries 14 Marks

PAGES:3

Name :

11. a. Explain the different types of cyclones and the mechanism of their formation [10]

b. Explain with examples, the difference between hazard and risk in the context of disaster management

[4]

OR

12. Ex	plain the following terms in the context of disaster management	[14]
· / 1	posure (b) resilience (c) disaster risk management (d) early warning systems, (e) ment (f) crisis counselling (g) needs assessment	damage
13.	a. What is participatory hazard mapping? How is it conducted? What are its advan	C
		[8]
	b. Explain the applications of hazard maps	[6]
	OR	
14.	Explain the types of vulnerabilities and the approaches to assess them	[14]
15.	a. Explain the core elements of disaster risk management	[8]

b. Explain the factors that decide the nature of disaster response [6]

OR

- a. What is disaster preparedness? Explain the components of a comprehensive disaster preparedness strategy [6]
 b. Explain the different disaster response actions [8]
 a. Explain the benefits and costs of stakeholder participation in disaster management [10]
 - b. How are stakeholders in disaster management identified? [4]

OR

- 18. a. What are the steps to effective disaster communication? What are the barriers to communication? [7]
 - b. Explain capacity building in the context of disaster management [7]

19. Explain the salient features of the National Policy on Disaster Management in India

[14]

OR

20. Explain the guiding principles and priorities of action according to the Sendai Framework for Disaster Risk Reduction [14]

Teaching Plan

2.1Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment1 Hour2.2Vulnerability assessment and types, Physical and social vulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour		Module 1	5 Hours
Oceans, inland water bodies; biosphere1.3Definition and meaning of key terms in Disaster Risk Reduction and Management- disaster, hazard,1 Hour1.4Exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, Disaster risk management, early warning systems1 Hour1.5Disaster preparedness, disaster prevention, disaster, Mitigation, disaster response, damage assessment, crisis counselling, needs assessment.1 Hour2.1Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment1 Hour2.2Vulnerability assessment and types, Physical and social vulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	1.1	composition, rocks, Soils; Atmosphere-layers, ozone layer,	1 Hour
and Management- disaster, hazard,141.4Exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, Disaster risk management, early warning systems1 Hour1.5Disaster preparedness, disaster prevention, disaster, Mitigation, disaster response, damage assessment, crisis counselling, needs assessment.1 Hour2.1Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment1 Hour2.2Vulnerability assessment and types, Physical and social vulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	1.2		1 Hour
IntegraIntegracapacity, resilience, disaster risk reduction, Disaster risk management, early warning systems11 Constant1.5Disaster preparedness, disaster prevention, disaster, Mitigation, disaster response, damage assessment, crisis counselling, needs assessment.1 Hour2.1Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment1 Hour2.2Vulnerability assessment and types, Physical and social vulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	1.3		1 Hour
disaster response, damage assessment, crisis counselling, needs assessment.5 Hours2.1Module 25 Hours2.1Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment1 Hour2.2Vulnerability assessment and types, Physical and social ulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	1.4	capacity, resilience, disaster risk reduction, Disaster risk	1 Hour
2.1Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment1 Hour2.2Vulnerability assessment and types, Physical and social vulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	1.5	disaster response, damage assessment, crisis counselling, needs	1 Hour
Vulnerability types and their assessment2.2Vulnerability ussessment and types, Physical and social vulnerability1 Hour2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour		Module 2	5 Hours
vulnerabilityJ Y Y Y Y2.3Economic and environmental vulnerability, Core elements of disaster risk assessment1 Hour2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 Hour3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	2.1		1 Hour
disaster risk assessment2.4Components of a comprehensive disaster preparedness strategy approaches, procedures1 Hour2.5Different disaster response actions1 HourModule 35 Hours3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	2.2		1 Hour
approaches, procedures1 Hour2.5Different disaster response actions1 HourModule 35 Hours3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	2.3		1 Hour
Module 3 5 Hours 3.1 Introduction to Disaster risk management, Core elements of Disaster Risk Management 1 Hour 3.2 Phases of Disaster Risk Management, Measures for Disaster Risk Reduction 1 Hour	2.4		1 Hour
3.1Introduction to Disaster risk management, Core elements of Disaster Risk Management1 Hour3.2Phases of Disaster Risk Management, Measures for Disaster Risk Reduction1 Hour	2.5	Different disaster response actions	1 Hour
Disaster Risk Management 3.2 Phases of Disaster Risk Management, Measures for Disaster Risk Reduction		Module 3	5 Hours
Reduction	3.1		1 Hour
3.3 Measures for Disaster prevention, mitigation, and preparedness. 1 Hour	2.2	Phases of Disaster Risk Management, Measures for Disaster Risk	1 Hour
	3.2		

3.4	Disaster response- objectives, requirements. Disaster response planning; types of responses.	1 Hour		
3.5	Introduction- Disaster Relief, Relief; international relief organizations.	1 Hour		
	Module 4	5 Hours		
4.1	Participatory stakeholder engagement	1 Hour		
4.2	Importance of disaster communication.	1 Hour		
4.3	Disaster communication- methods, barriers. Crisis counselling	1 Hour		
4.4	Introduction to Capacity Building. Concept – Structural Measures, Non-structural Measures.			
4.5	Introduction to Capacity Assessment, Capacity Assessment; Strengthening, Capacity for Reducing Risk			
	Module 5	5 Hours		
5.1	Introduction-Common disaster types in India.	1 Hour		
5.2	Common disaster legislations in India on disaster management	1 Hour		
5.3	National disaster management policy, Institutional arrangements for disaster management in India.	1 Hour		
5.4	The Sendai Framework for Disaster Risk Reduction and targets	1 Hour		
5.5	The Sendai Framework for Disaster Risk Reduction-priorities for action, guiding principles	1 Hour		

	Industrial Economics &	Category	L	Т	Р	CREDIT
HUT 300	Foreign Trade	HSMC	3	0	0	3

Preamble: To equip the students to take industrial decisions and to create awareness of economic environment.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Explain the problem of scarcity of resources and consumer behaviour, and to evaluate the impact of government policies on the general economic welfare. (Cognitive knowledge level: Understand)
CO2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production. (Cognitive knowledge level: Apply)
CO3	Determine the functional requirement of a firm under various competitive conditions. (Cognitive knowledge level: Analyse)
CO4	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society. (Cognitive knowledge level: Analyse)
CO5	Determine the impact of changes in global economic policies on the business opportunities of a firm. (Cognitive knowledge level: Analyse)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2										3	
CO2	2	2			2	2	3				3	
CO3	2	2	1								3	
CO4	2	2	1			1					3	
CO5	2	2	1								3	

	Abstract POs defined by National Board of Accreditation								
PO#	Broad PO	PO#	Broad PO						
PO1	Engineering Knowledge	PO7	Environment and Sustainability						
PO2	Problem Analysis	PO8	Ethics						
PO3	Design/Development of solutions	PO9	Individual and team work						
PO4	Conduct investigations of complex problems	PO10	Communication						
PO5	Modern tool usage	PO11	Project Management and Finance						
PO6	The Engineer and Society	PO12	Lifelong learning						

Assessment Pattern

Bloom's Category	Continuous A	End Semester	
	Test 1 (Marks)	Test 2 (Marks)	Examination Marks
Remember	15	15	30
Understand	20	20	40
Apply	15	15	30

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test (2 numbers)	: 25 marks
Continuous Assessment - Assignment	: 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), having a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B.

Part A : 30 marks

Part B : 70 marks

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 3 sub-divisions and carries 14 marks.

SYLLABUS

HUT 300 Industrial Economics & Foreign Trade

Module 1 (Basic Concepts and Demand and Supply Analysis)

Scarcity and choice - Basic economic problems- PPC – Firms and its objectives – types of firms – Utility – Law of diminishing marginal utility – Demand and its determinants – law of demand – elasticity of demand – measurement of elasticity and its applications – Supply, law of supply and determinants of supply – Equilibrium – Changes in demand and supply and its effects – Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.

Module 2 (Production and cost)

Production function – law of variable proportion – economies of scale – internal and external economies – Isoquants, isocost line and producer's equilibrium – Expansion path – Technical progress and its implications – Cobb-Douglas production function - Cost concepts – Social cost: private cost and external cost – Explicit and implicit cost – sunk cost - Short run cost curves - long run cost curves – Revenue (concepts) – Shutdown point – Break-even point.

Module 3 (Market Structure)

Perfect and imperfect competition – monopoly, regulation of monopoly, monopolistic completion (features and equilibrium of a firm) – oligopoly – Kinked demand curve – Collusive oligopoly (meaning) – Non-price competition – Product pricing – Cost plus pricing – Target return pricing – Penetration pricing – Predatory pricing – Going rate pricing – Price skimming.

Module 4 (Macroeconomic concepts)

Circular flow of economic activities – Stock and flow – Final goods and intermediate goods -Gross Domestic Product - National Income – Three sectors of an economy- Methods of measuring national income – Inflation- causes and effects – Measures to control inflation-Monetary and fiscal policies – Business financing- Bonds and shares -Money market and Capital market – Stock market – Demat account and Trading account - SENSEX and NIFTY.

Module 5 (International Trade)

Advantages and disadvantages of international trade - Absolute and Comparative advantage theory - Heckscher - Ohlin theory - Balance of payments – Components – Balance of Payments

deficit and devaluation – Trade policy – Free trade versus protection – Tariff and non-tariff barriers.

Reference Materials

- 1. Gregory N Mankiw, 'Principles of Micro Economics', Cengage Publications
- 2. Gregory N Mankiw, 'Principles of Macro Economics', Cengage Publications
- 3. Dwivedi D N, 'Macro Economics', Tata McGraw Hill, New Delhi.
- 4. Mithani D M, 'Managerial Economics', Himalaya Publishing House, Mumbai.
- 5. Francis Cherunilam, 'International Economics', McGraw Hill, New Delhi.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Why does the problem of choice arise?
- 2. What are the central problems?
- 3. How do we solve the basic economic problems?
- 4. What is the relation between price and demand?
- 5. Explain deadweight loss due to the imposition of a tax.

Course Outcome 2 (CO2):

- 1. What is shutdown point?
- 2. What do you mean by producer equilibrium?
- 3. Explain break-even point;

4. Suppose a chemical factory is functioning in a residential area. What are the external costs?

Course Outcome 3 (CO3):

- 1. Explain the equilibrium of a firm under monopolistic competition.
- 2. Why is a monopolist called price maker?
- 3. What are the methods of non-price competition under oligopoly?

4. What is collusive oligopoly?

Course Outcome 4 (CO4):

- 1. What is the significance of national income estimation?
- 2. How is GDP estimated?
- 3. What are the measures to control inflation?
- 4. How does inflation affect fixed income group and wage earners?

Course Outcome 5 (CO5):

- 1. What is devaluation?
- 2. Suppose a foreign country imposes a tariff on Indian goods. How does it affect India's exports?
- 3. What is free trade?
- 4. What are the arguments in favour of protection?

Model Question paper

OP CODE:

Reg No:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH /SIXTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: HUT 300

Course Name: Industrial Economics & Foreign Trade

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

- 1. Why does an economic problem arise?
- 2. What should be the percentage change in price of a product if the sale is to be increased by 50 percent and its price elasticity of demand is 2?
- 3. In the production function $Q = 2L^{1/2}K^{1/2}$ if L=36 how many units of capital are needed to

produce 60 units of output?

- 4. Suppose in the short run AVC 4. Suppose in the short run AVC<P<AC. Will this firm produce or shut down? Give reason.
- 5. What is predatory pricing?
- 6. What do you mean by non- price competition under oligopoly?
- 7. What are the important economic activities under primary sector?
- 8. Distinguish between a bond and share?
- 9. What are the major components of balance of payments?

PAGES:3

Name :

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Prepare a utility schedule showing units of consumption, total utility and marginal utility, and explain the law of diminishing marginal utility. Point out any three limitations of the law.

b) How is elasticity of demand measured according to the percentage method? How is the measurement of elasticity of demand useful for the government?

Or

12. a) Explain the concepts consumer surplus and producer surplus.

b) Suppose the government imposes a tax on a commodity where the tax burden met by the consumers. Draw a diagram and explain dead weight loss. Mark consumer surplus, producer surplus, tax revenue and dead weight loss in the diagram.

MODULE II

13. a) What are the advantages of large-scale production?

b) Explain Producer equilibrium with the help of isoquants and isocost line. What is expansion path?

Or

14. a) Explain break-even analysis with the help of a diagram.

- b) Suppose the monthly fixed cost of a firm is Rs. 40000 and its monthly total variable cost is Rs. 60000.
 - i. If the monthly sales is Rs. 120000 estimate contribution and break-even sales.
 - ii. If the firm wants to get a monthly profit of Rs.40000, what should be the sales?
- c) The total cost function of a firm is given as $TC=100+50Q 11Q^2+Q^3$. Find marginal cost when output equals 5 units.

MODULE III

15. a) What are the features of monopolistic competition?

b) Explain the equilibrium of a firm earning supernormal profit under monopolistic competition.

Or

16.a) Make comparison between perfect competition and monopoly.

b) Explain price rigidity under oligopoly with the help of a kinked demand curve.

MODULE IV

17. a) How is national income estimated under product method and expenditure method?

b) Estimate GDPmp, GNPmp and National income

Private consumption expenditure	= 2000 (in 000 cores) = 500
Government Consumption	- 500
NFIA	= -(300)
Investment	= 800
Net=exports	=700
Depreciation	= 400
Net-indirect tax	= 300

Or

- 18. a) What are the monetary and fiscal policy measures to control inflation?
 - b) What is SENSEX?

MODULE V

- 19. a) What are the advantages of disadvantages of foreign trade?
 - b) Explain the comparative cost advantage.

Or

- 20. a) What are the arguments in favour protection?
 - b) Examine the tariff and non-tariff barriers to international trade.

 $(5 \times 14 = 70 \text{ marks})$

	Module 1 (Basic concepts and Demand and Supply Analysis)	7 Hours
1.1	Scarcity and choice – Basic economic problems - PPC	1 Hour
1.2	Firms and its objectives – types of firms	1 Hour
1.3	Utility – Law of diminishing marginal utility – Demand – law of demand	1 Hour
1.4	Measurement of elasticity and its applications	1 Hour
1.5	Supply, law of supply and determinants of supply	1 Hour
1.6	Equilibrium – changes in demand and supply and its effects	1 Hour
1.7	Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.	1 Hour
	Module 2 (Production and cost)	7 Hours
2.1	Productions function – law of variable proportion	1 Hour
2.2	Economies of scale – internal and external economies	1 Hour
2.3	producers equilibrium – Expansion path	1 Hour
2.4	Technical progress and its implications – cob Douglas Production function	1 Hour
2.5	Cost concepts – social cost: private cost and external cost – Explicit and implicit cost – sunk cost	1 Hour
2.6	Short run cost curves & Long run cost curves	1 Hour
2.7	Revenue (concepts) – shutdown point – Break-even point.	1 Hour
	Module 3 (Market Structure)	6 hours
3.1	Equilibrium of a firm, MC – MR approach and TC – TR approach	1 Hour
3.2	Perfect competition & Imperfect competition	1 Hour
3.3	Monopoly – Regulation of monopoly – Monopolistic competition	1 Hour
3.4	Oligopoly – kinked demand curve	1 Hour
3.5	Collusive oligopoly (meaning) – Non price competition	1 Hour
3.6	Cost plus pricing – Target return pricing – Penetration, Predatory pricing – Going rate pricing – price skimming	1 Hour

Teaching Plan

	Module 4 (Macroeconomic concepts)	7 Hours
4.1	Circular flow of economic activities	1 Hour
4.2	Stock and flow – Final goods and intermediate goods – Gross Domestic Product - National income – Three sectors of an economy	1 Hour
4.3	Methods of measuring national income	1 Hour
4.4	Inflation – Demand pull and cost push – Causes and effects	1 Hour
4.5	Measures to control inflation – Monetary and fiscal policies	1 Hour
4.6	Business financing – Bonds and shares – Money market and capital market	1 Hour
4.7	Stock market – Demat account and Trading account – SENSEX and NIFTY	1 Hour
	Module 5 (International Trade)	8 Hours
5.1	Advantages and disadvantages of international trade	1 Hour
5.2	Absolute and comparative advantage theory	2 Hour
5.3	Heckscher – Ohlin theory	1 Hour
5.4	Balance of payments - components	1 Hour
5.5	Balance of payments deficit and devaluation	1 Hour
5.6	Trade policy – Free trade versus protection	1 Hour
5.7	Tariff and non tariff barriers.	1 Hour

HUT 310	Management for Engineers	Category	L	Т	Р	Credit
		НМС	3	0	0	3

Preamble: This course is intended to help the students to learn the basic concepts and functions of management and its role in the performance of an organization and to understand various decision-making approaches available for managers to achieve excellence. Learners shall have a broad view of different functional areas of management like operations, human resource, finance and marketing.

Prerequisite: Nil

Course Outcomes After the completion of the course the student will be able to

C01	Explain the characteristics of management in the contemporary context (Cognitive
COI	Knowledge level: Understand).
CO2	Describe the functions of management (Cognitive Knowledge level: Understand).
CO2	Demonstrate ability in decision making process and productivity analysis (Cognitive
CO3	Knowledge level: Understand).
CO4	Illustrate project management technique and develop a project schedule (Cognitive
C04	Knowledge level: Apply).
CO5	Summarize the functional areas of management (Cognitive Knowledge level:
05	Understand).
	Comprehend the concept of entrepreneurship and create business plans (Cognitive
CO6	Knowledge level: Understand).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2				1	2	2	2		2	1	1
CO2	2				1	1		2	1	2	1	1
CO3	2	2	2	2	1							
CO4	2	2	2	2	1						2	1
CO5	2					1	1		1	2	1	
CO6		2	2	2	1	1	1	1	1	1	1	1

Mapping of course outcomes with program outcomes

	Abstract POs defined by National Board of Accreditation						
PO1	Engineering Knowledge	PO7	Environment and Sustainability				
PO2	Problem Analysis	PO8	Ethics				
PO3	Design/Development of solutions	PO9	Individual and team work				
PO4	Conduct investigations of complex problems	PO10	Communication				
PO5	Modern tool usage	PO11	Project Management and Finance				
PO6	The Engineer and Society	PO12	Life long learning				

Assessment Pattern

Bloom's	Test 1 (Marks in	Test 2 (Marks in	End Semester Examination
Category	percentage)	percentage)	(Marks in percentage)
Remember	15	15	30
Understand	15	15	30
Apply	20	20	40
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 Hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test	: 25 marks
Continuous Assessment - Assignment	: 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), as student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

HUT 310 Management for Engineers (35 hrs)

Module 1 (Introduction to management Theory- 7 Hours)

Introduction to management theory, Management Defined, Characteristic of Management, Management as an art-profession, System approaches to Management, Task and Responsibilities of a professional Manager, Levels of Manager and Skill required.

Module 2 (management and organization- 5 hours)

Management Process, Planning types, Mission, Goals, Strategy, Programmes, Procedures, Organising, Principles of Organisation, Delegation, Span of Control, Organisation Structures, Directing, Leadership, Motivation, Controlling..

Module 3 (productivity and decision making- 7 hours)

Concept of productivity and its measurement; Competitiveness; Decision making process; decision making under certainty, risk and uncertainty; Decision trees; Models of decision making.

. Module 4 (project management- 8 hours)

Project Management, Network construction, Arrow diagram, Redundancy. CPM and PERT Networks, Scheduling computations, PERT time estimates, Probability of completion of project, Introduction to crashing.

Module 5 (functional areas of management- 8 hours)

Introduction to functional areas of management, Operations management, Human resources management, Marketing management, Financial management, Entrepreneurship, Business plans, Corporate social responsibility, Patents and Intellectual property rights.

References:

- H. Koontz, and H. Weihrich, Essentials of Management: An International Perspective. 8th ed., McGraw-Hill, 2009.
- 2. P C Tripathi and P N Reddy, Principles of management, TMH, 4th edition, 2008.
- 3. P. Kotler, K. L. Keller, A. Koshy, and M. Jha, Marketing Management: A South Asian Perspective. 14th ed., Pearson, 2012.
- 4. M. Y. Khan, and P. K. Jain, Financial Management, Tata-McGraw Hill, 2008.
- 5. R. D. Hisrich, and M. P. Peters, Entrepreneurship: Strategy, Developing, and Managing a New Enterprise, 4th ed., McGraw-Hill Education, 1997.
- D. J. Sumanth, Productivity Engineering and Management, McGraw-Hill Education, 1985.
- K.Ashwathappa, 'Human Resources and Personnel Management', TMH, 3 rd edition, 2005.
- R. B. Chase, Ravi Shankar and F. R. Jacobs, Operations and Supply Chain Management, 14th ed. McGraw Hill Education (India), 2015.

Sample Course Level Assessment Questions

Course Outcome1 (CO1): Explain the systems approach to management?

Course Outcome 2 (CO2): Explain the following terms with a suitable example Goal, Objective, and Strategy.

Course Outcome 3 (CO3): Mr. Shyam is the author of what promises to be a successful novel. He has the option to either publish the novel himself or through a publisher. The publisher is offering Mr. Shyam Rs. 20,000 for signing the contract. If the novel is successful, it will sell 200,000 copies. Else, it will sell 10,000 copies only. The publisher pays a Re. 1 royalty per copy. A market survey indicates that there is a 70% chance that the novel will be successful. If Mr. Shyam undertakes publishing, he will incur an initial cost of Rs. 90,000 for printing and marketing., but each copy sold will net him Rs. 2. Based on the given information and the

decision analysis method, determine whether Mr. Shyam should accept the publisher's offer or publish the novel himself.

Course Outcome 4 (CO4): Explain the concepts of crashing and dummy activity in project management.

Course Outcome 5 (CO5): Derive the expression for the Economic order quantity (EOQ)?

Course Outcome 6 (CO6): Briefly explain the theories of Entrepreneurial motivation.?

Model Question Paper

QP CODE:

Reg No:_____

PAGES: 4

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: HUT 310

Course name: Management for Engineers

Max Marks: 100

Duration: 3 Hours

PART-A (Answer All Questions. Each question carries 3 marks)

- 1. "Management is getting things done through other." Elaborate.
- 2. Comment on the true nature of management. Is it a science or an art?
- 3. Planning is looking ahead and controlling is looking back. Comment with suitable examples
- 4. Explain the process of communication?
- 5. Explain the hierarchy of objectives?
- 6. Explain the types of decisions?
- 7. Describe the Economic man model?
- 8. Explain the concepts of crashing and dummy activity in project management.
- 9. Differentiate the quantitative and qualitative methods in forecasting.

10. What are the key metrics for sustainability measurement? What makes the measurement and reporting of sustainability challenging?

PART-B (Answer any one question from each module)

- 11. a) Explain the systems approach to management. (10)
 - b) Describe the roles of a manager (4)

OR

12. a) Explain the 14 principles of administrative management? (10)

b) Explain the different managerial skills (4)

13. a) What are planning premises, explain the classification of planning premises. (10)

b) Distinguish between strategy and policy. How can policies be made effective. (4)

OR

14 a) Explain three motivational theories. (9)

b) Describe the managerial grid. (5)

15. a) Modern forest management uses controlled fires to reduce fire hazards and to stimulate new forest growth. Management has the option to postpone or plan a burning. In a specific forest tract, if burning is postponed, a general administrative cost of Rs. 300 is incurred. If a controlled burning is planned, there is a 50% chance that good weather will prevail and burning will cost Rs. 3200. The results of the burning may be either successful with probability 0.6 or marginal with probability 0.4. Successful execution will result in an estimated benefit of Rs. 6000, and marginal execution will provide only Rs. 3000 in benefits. If the weather is poor, burning will be cancelled incurring a cost of Rs. 1200 and no benefit. i) Develop a decision tree for the problem. (ii) Analyse the decision tree and determine the optimal course of action. (8)

b) Student tuition at ABC University is \$100 per semester credit hour. The Education department supplements the university revenue by matching student tuition, dollars per dollars. Average class size for typical three credit course is 50 students. Labour costs are \$4000 per class, material costs are \$20 per student, and overhead cost are \$25,000 per class. (a) Determine the total factor productivity. (b) If instructors deliver lecture 14 hours per week and the semester lasts for 16 weeks, what is the labour productivity? **(6)**

OR

16. a) An ice-cream retailer buys ice cream at a cost of Rs. 13 per cup and sells it for Rs. 20 per cup; any remaining unsold at the end of the day, can be disposed at a salvage price of Rs. 2.5 per cup. Past sales have ranged between 13 and 17 cups per day; there is no reason to believe that

sales volume will take on any other magnitude in future. Find the expected monetary value and EOL, if the sales history has the following probabilities: (9)

Market Size	13	14	15	16	17
Probability	0.10	0.15	0.15	0.25	0.35

b) At Modem Lumber Company, Kishore the president and a producer of an apple crates sold to growers, has been able, with his current equipment, to produce 240 crates per 100 logs. He currently purchases 100 logs per day, and each log required 3 labour hours to process. He believes that he can hire a professional buyer who can buy a better quality log at the same cost. If this is the case, he increases his production to 260 crates per 100 logs. His labour hours will increase by 8 hours per day. What will be the impact on productivity (measured in crates per labour-hour) if the buyer is hired? What is the growth in productivity in this case? **(5)**

Activity	Time (Days)	Immediate Predecessors
А	1	-
В	4	А
С	3	А
D	7	А
Е	6	В
F	2	C, D
G	7	E, F
Н	9	D
Ι	4	G, H

17. a) A project has the following list of activities and time estimates:

(a) Draw the network. (b) Show the early start and early finish times. (c) Show the critical path. (10)

b) An opinion survey involves designing and printing questionnaires, hiring and training personnel, selecting participants, mailing questionnaires and analysing data. Develop the precedence relationships and construct the project network. (4)

OR

18. a) The following table shows the precedence requirements, normal and crash times, and normal and crash costs for a construction project:

	Immediate	Required T	ime (Weeks)	Cost	(Rs.)
Activity	Predecessors	Normal	Crash	Normal	Crash
А	-	4	2	10,000	11,000
В	А	3	2	6,000	9,000
С	А	2	1	4,000	6,000
D	В	5	3	14,000	18,000
Е	B, C	1	1	9,000	9,000
F	С	3	2	7,000	8,000
G	E, F	4	2	13,000	25,000
Н	D, E	4	1	11,000	18,000
Ι	H, G	6	5	20,000	29,000

Draw the network. (b) Determine the critical path. (c) Determine the optimal duration and the associated cost. (10)

b) Differentiate between CPM and PERT. (4)

19. a) What is meant by market segmentation and explain the process of market segmentation (8) b) The Honda Co. in India has a division that manufactures two-wheel motorcycles. Its budgeted sales for Model G in 2019 are 80,00,000 units. Honda's target ending inventory is 10,00, 000 units and its beginning inventory is 12, 00, 000 units. The company's budgeted selling price to its distributors and dealers is Rs. 40, 000 per motorcycle. Honda procures all its wheels from an outside supplier. No defective wheels are accepted. Honda's needs for extra wheels for replacement parts are ordered by a separate division of the company. The company's target ending inventory is 3,00,000 wheels and its beginning inventory is 2,00,000 wheels. The budgeted purchase price is Rs. 1,600 per wheel.

- (a) Compute the budgeted revenue in rupees.
- (b) Compute the number of motorcycles to be produced.

Compute the budgeted purchases of wheels in units and in rupees.? (6)

OR

20. a) a) "Human Resource Management policies and principles contribute to effectiveness, continuity and stability of the organization". Discuss. (b) What is a budget? Explain how sales budget and production budgets are prepared? (10)

b) Distinguish between the following: (a) Assets and Liabilities (b) Production concept and Marketing concept (c) Needs and Wants (d) Design functions and Operational control functions in operations (4)

Teaching Plan

Sl.No	TOPIC	SESSION
	Module I	
1.1	Introduction to management	1
1.2	Levels of managers and skill required	2
1.3	Classical management theories	3
1.4	neo-classical management theories	4
1.5	modern management theories	5
1.6	System approaches to Management,	6
1.7	Task and Responsibilities of a professional Manager	7
	Module 2	
2.1	Management process – planning	8
2.2	Mission – objectives – goals – strategy – policies – programmes – procedures	9
2.3	Organizing, principles of organizing, organization structures	10
2.4	Directing, Leadership	11
2.5	Motivation, Controlling	12
	Module III	
3.1	Concept of productivity and its measurement Competitiveness	13
3.2	Decision making process;	14
3.3	Models in decision making	15
3.4	Decision making under certainty and risk	16
3.5	Decision making under uncertainty	17
3.6	Decision trees	18
3.7	Models of decision making.	19
	Module IV	
4.1	Project Management	20

Sl.No	TOPIC	SESSION			
	Module I				
4.2	Network construction	21			
4.3	Arrow diagram, Redundancy	22			
4.4	CPM and PERT Networks	23			
4.5	Scheduling computations	24			
4.6	PERT time estimates	25			
4.7	Probability of completion of project	26			
4.8	Introduction to crashing				
Module V					
5.1	Introduction to functional areas of management,	28			
5.2	Operations management	29			
5.3	Human resources management,	30			
5.4	Marketing management	31			
5.5	Financial management	32			
5.6	Entrepreneurship,	33			
5.7	Business plans	34			
5.8	Corporate social responsibility, Patents and Intellectual property rights	35			

CURRICULUM

IL KALAM

MOGICAI

B.TECH (2019 SCHEME)

Estel

INDEX

SL.No	Course Name	Page No
1	AERONAUTICAL ENGINEERING	1-20
2	APPLIED ELECTRONICS & INSTRUMENTATION	21-41
3	AUTOMOBILE ENGINEERING	42-62
4	BIOMEDICAL ENGINEERING	63-84
5	BIOTECHNOLOGY ENGINEERING	85-104
6	CHEMICAL ENGINEERING	105-125
7	CIVIL ENGINEERING	126-145
8	COMPUTER SCIENCE AND ENGINEERING	146 <mark>-</mark> 170
9	ELECTRONICS AND BIOMEDICAL ENGINEERING	171-192
10	ELECTRONICS AND COMMUNICATION ENGINEERING	193-213
11	ELECTRICAL AND ELECTRONICS ENGINEERING	214-234
12	FOOD TECHNOLOGY	235-254
13	INDUSTRIAL ENGINEERING	255-274
14	INSTRUMENTATION AND CONTROL ENGINEERING	275-295
15	INFORMATION TECHNOLOGY	296-315
16	MECHANICAL ENGINEERING	316-335
17	MECHANICAL (AUTOMOBILE) ENGINEERING	336-356
18	MECHANICAL PRODUCTION ENGINEERING	357-377
19	MECHATRONICS	378-397
20	METALLURGICAL AND MATERIALS ENGINEERING	398-418
21	NAVAL ARCHITECTURE AND SHIP BUILDING	419-439
22	POLYMER ENGINEERING	440-457
23	PRODUCTION ENGINEERING	458-478
24	ROBOTICS AND AUTOMATION	479-499
25	SAFETY AND FIRE ENGINEERING	500-520

CURRICULUM I TO VIII: B.Tech AERONAUTICAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50	5				50		
Credits Activity	for		2					2		
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table	1.	Code	for	the	courses
Table	± .	Coue	101	une	COUISES

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
·	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
·	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

Estel

SEMESTER II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
B 1/2	PHT 110	EQUATIONS AND TRANSFORMS ENGINEERING PHYSICS B	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
,	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

 Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.

- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS		4	4
В	AOT201	MECHANICS OF MATERIALS AND AIRCRAFT		4	4
С	MET203	MECHANICS OF FLUIDS	3-1-0	4	4
D	AOT205	MECHANICS OF FLIGHT AND AIRCRAFT BASICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	AOL201	FLUID MECHANICS LAB	0-0-3	3	2
Т	AOL203	MATERIAL TESTING LAB	0-0-3	3	2
R∖M	VAC	Remedial/Minor course	3-1-0	4*	4
		TOTAL		30	22/26

NOTE:

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	AOT202	THERMODYNAMICS	3-1-0	4	4
С	AOT204	AERODYNAMICS I	3-1-0	4	4
D	AOT206	AIRCRAFT STRUCTURES I	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	AOL202	AERODYNAMICS AND FLIGHT MECHANICS	0-0-3	3	2
Т	AOL204	CAD LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		30	22/26

SEMESTER IV

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa

1000

2014

*All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	AOT301	AIRCRAFT STRUCTURES II	3-1-0	4	4
В	AOT303	AIRBREATHING PROPULSION	3-1-0	4	4
С	AOT305	AERODYNAMICS II	3-1-0	4	4
D	AOT307	AVIONICS AND AIRCRAFT SYSTEMS	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	AOL331	PROPULSION LAB	0-0-3	3	2
Т	AOL333	AIRCRAFT STRCTURAL ANALYSIS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		31	23/27

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	AOT302	HEAT TRANSFER	3-1-0	4	4
В	AOT304	VIBRATION AND AERO ELASTICITY	3-1-0	4	4
С	AOT306	NON - AIRBREATHING PROPULSION	3-1-0	4	4
D	ΑΟΤΧΧΧ	PROGRAME ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	AOT308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	AOL332	AIRFRAME PRODUCTION AND MAINTENACE LAB	0-0-3	3	2
Т	AOD334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	AOT312	ELASTIC ANALYSIS OF PLATES AND SHELLS	2-1-0		
	AOT322	SPACE SCIENCE AND SPACE ENVIRONMENT	2-1-0		
D	AOT332	NUMERICAL PROGRAMMING	2-1-0	3	3
	AOT342	DESIGN OF AEROSPACE STRUCTURES	2-1-0		
	AOT352	AERO ACOUSTICS	2-1-0		
	AOT362	FUNDAMENTALS OF COMBUSION	2-1-0]	
	AOT372	NON-DESTRUCTIVE TESTING	2-1-0		

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks						
Split up for CIE	EHO.					
Attendance	: 10					
Guide	: 15					
Project Report	: 10					
Evaluation by the Committee (will	be evaluating	the level	of	completion	and	
demonstration of functionality/specifications, presentation, oral examination, work						
knowledge and involvement)	: 40					

SEMESTER VII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	AOT401	COMPUTATIONAL FLUID DYNAMICS	2-1-0	3	3
В	ΑΟΤΧΧΧ	PROGRAM ELECTIVE II	2-1-0	3	3
С	ΑΟΤΧΧΧ	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	AOL411	ANALYSIS AND SIMULATION LAB	0-0-3	3	2
Т	AOQ413	SEMINAR	0-0-3	3	2
U	AOD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	AOT413	EXPERIMENTAL STRESS ANALYSIS	2-1-0		
	AOT423	ADVANCED DYNAMICS AND CONTROL	2-1-0		
В	AOT433	ACTUATORS AND CONTROLS IN AIRCRAFT	2-1-0		
	AOT443	FATIQUE AND FRACTURE MECHANICS	2-1-0		
	AOT453	WIND TUNNEL TECHNIQUES	2-1-0	3	3
	AOT463	STRUCTURAL HEALTH MONITORING	2-1-0		
	AOT473	EXPERIMENTAL AERODYNAMICS	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of AERONAUTICAL for students of other undergraduate branches offered in the college.

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
с	AOT415 AOT 425	INTRODUCTION TO AERONAUTICS INTRODUCTION TO AERODYNAMICS	2-1-0 2-1-0	3	3
	AOT 435 AOT 445	FLIGHT AGAINST GRAVITY NUMERICAL METHODS AND PROGRAMMING	2-1-0 2-1-0		

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50						
Attendance	: 10					
Guide	: 20					
Technical Content of the Report	: 30					
Presentation	: 40					

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Aeronautical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;
 - Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - Preparing a Written Report on the Study conducted for presentation to the Department;
 - Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	AOT402	ROCKETRY AND SPACE MECHANICS	2-1-0	3	3
В	ΑΟΤΧΧΧ	PROGRAM ELECTIVE III	2-1-0	3	3
C	ΑΟΤΧΧΧ	PROGRAM ELECTIVE IV	2-1-0	3	3
D	ΑΟΤΧΧΧ	PROGRAM ELECTIVE V	2-1-0	3	3
E	AOT404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1
U	AOD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		28	17/19

PROGRAM ELECTIVE III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT			
	AOT414	FINITE ELEMENT METHOD	2-1-0					
	AOT424	HYPERSONIC AND HIGH TEMPERATURE	2-1-0					
		AERODYNAMICS						
	AOT434	MICROPROCESSOR AND ITS	2-1-0					
В		APPLICATIONS		3	3			
	AOT444	INSTRUMENTATION AND	2-1-0					
		MEASUREMENTS						
	AOT454	AEROSPACE GUIDANCE AND CONTROLS	2-1-0					
	AOT464	AUTOMATION AND FEEDBACK CONTROLS	2-1-0					
		IN AEROSPACE						
	AOT474	MACHINE LEARNING IN AEROSPACE	2-1-0					
		ENGINEERING						
PROGRAM ELECTIVE IV								

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	AOT416	AIRTRANSPORTATION AND AIRLINE	2-1-0		
		MANAGEMENT			
	AOT426	AIRTRAFIC CONTROL AND MANAGEMENT	2-1-0		
	AOT436	ENERGY METHODS IN STRUCTURAL	2-1-0		
C		MECHANICS		3	3
	AOT446	AIRCRAFT GENERAL MAINTANCE AND	2-1-0		
		PRACTICES			
	AOT456	ROTORY WING THEORY AND HELICOPTER	2-1-0		
		AERODYNAMICS			
	AOT466	INDUSTRIAL AERODYNAMICS	2-1-0		
	AOT476	CIVIL AVIATION REGULATIONS	2-1-0		

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	AOT418	STABILITY AND CONTROL IN AIRCRAFT	2-1-0		
	AOT428	AIRCRAFT PRODUCTION TECHNOLOGY	2-1-0		
D	AOT438	THEORY OF ELASTICITY	2-1-0	3	3
	AOT448	INTRODUCTION TO FLOW INSTABILITY	2-1-0		
	AOT458	AIRFRAME MAINTANCE AND REPAIR	2-1-0		
	AOT468	HIGH TEMPERATURE MATERIALS	2-1-0	111	
	AOT478	MECHANICS OF COMPOSITES	2-1-0		

PROGRAM ELECTIVE V

NOTE

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.

LENOLOGICAL

- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;
 - Preparing a paper for Conference presentation/Publication in Journals, if possible;

- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75

Guide : 30 Interim evaluation by the evaluation committee : 50

Quality of the report evaluated by the above committee : 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor). : 40

Final evaluation by a three member committee

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct Comprehensive Course Viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by M slot courses.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do Miniproject either in S7 or S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in AERONAUTICAL Branch can opt to study the courses listed below.

S e		BASKET I	2		-	BASKET II			<u>}</u>	BASKET III		
m e st er	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S3	AOT281	FUNDAMENTALS OF AERONAUTICS	4	4	AOT 281	FUNDAMENTALS OF AERONAUTICS	4	4	AOT 281	FUNDAMENTALS OF AERONAUTICS	4	4
S4	AOT 282	FUNDAMENTALS OF AERODYNAMICS	4	4	AOT 284	APPLIED THERMODYNAMICS	4	4	AOT 286	MECHANICS OF MATERIALS AND STRUCTURES	4	4
S5	AOT 381	HIGHSPEED AERODYNAMICS	4	4	AOT 383	BASICS OF AERO ENGINES	4	4	AOT 385	AIRCRAFT STRUCTURAL ANALYSIS	4	4
S6	AOT 382	EXPERIMENTAL AERODYNAMICS AND FLOW VISUALISATION	4	4	AOT 38 <mark>4</mark>	ROCKET PROPULSION	4	4	AOT 386	STRUCTURAL DYNAMICS AND AERO ELASTICITY	4	4
S7	AOD 481	MINIPROJECT	4	4	AOD481	MINIPROJECT	4	4	AOD 481	MINIPROJECT	4	4
S8	AOD 482	MINIPROJECT	4	4	AOD 482	MINIPROJECT	4	4	AOD 482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in AERONAUTICAL ENGINEERING** can opt to study the courses listed below.

		GROUP I		ROUP I GROUP II					GROUP III					
S e m es te r	Course No	COURSE NAME	H O U R S	C R E D I T	Course No	COURSE NAME	H O U R S	C R D I T	Course No	COURSE NAME	H O U R S			
S4	AOT 292	ADVANCED FLUID MECHANICS	4	4	AOT 294	GAS DYNAMICS	4	4	AOT 296	ADVANCED MECHANICS OF MATERIALS	4	4		
S5	AOT 393	Advanced Numerical techniques	4	4	AOT 395	HIGH SPEED PROPULSION SYSTEMS	4	4	AOT 397	ADVANCED CONCEPTS IN AIRCRAFT STRUCTURES	4	4		
S6	AOT 394	RAREFIED GAS DYNAMICS AND INTERPLANETAR Y SPACE TRAVEL	4	4	AOT 396	ADVANCED PROPULSION SYSTEMS	4	4	AOT 398	COMPUTATIONAL STRUCTURAL MECHANICS	4	4		
S7	AOT 495	BOUNDAARY LAYER THEORY	4	4	AOT 497	ADVANCED HEAT TRANSFER	4	4	AOT 499	DESIGN OF COMPOSITE STRUCTURES	4	4		
S8	AOD 496	MINIPROJECT	4	4	AOD 496	MINIPROJECT	4		AOD 496	MINIPROJECT	4	4		

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch mates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech APPLIED ELECTRONICS & INSTRUMENTATION

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Semester	1	2	3	4	5	6	7	8	Total
				201	11				
Credits	17	21	22	22	23	23	15	17	160
Activity		50				Į	50		
Points									
Credits for				2					2
Activity									
Grand.Total									162

APPLIED ELECTRONICS & INSTRUMENTATION

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like E C L 2 0 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	Sl.No	Department	Course Prefix
	AND AL		-	ICAL AW	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT2C	28	Production Engg	PE
14	Humanities	HU	T	Robotics and	
			29	Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

APPLIED ELECTRONICS & INSTRUMENTATION

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
_, _	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUN 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		<mark>23/2</mark> 4 *	17

*Minimum hours per week

Note:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
		EQUATIONS AND TRANSFORMS			
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2					
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	- 4	TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

APPLIED ELECTRONICS & INSTRUMENTATION

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	ECT201	SOLID STATE DEVICES	3-1-0	4	4
С	ECT203	LOGIC CIRCUIT DESIGN	3-1-0	4	4
D	ECT205	NETWORK THEORY	3-1-0	4	4
E 1/2	ES <u>T200</u>	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	ECL201	SCIENTIFIC COMPUTING LAB	0-0-3	3	2
Т	ECL203	LOGIC DESIGN LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
				26/30	22/26
		TOTAL			

NOTE:

Estd.

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT204	PROBABILITY, RANDOM PROCESS AND NUMERICAL METHODS	3-1-0	4	4
В	ECT202	ANALOG CIRCUITS	3-1-0	4	4
С	ECT204	SIGNALS AND SYSTEMS	3-1-0	4	4
D	AET206	MEASUREMENTS AND INSTRUMENTATION	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	ECL202	ANALOG CIRCUITS AND SIMULATION	0-0-3	3	2
Т	AEL204	TRANSDUCERS AND MEASUREMENTS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	26/30	22/26

NOTE:

Estd.

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	AET301	CONTROL SYSTEMS	3-1-0	4	4
В	AET303	INDUSTRIAL INSTRUMENTATION	3-1-0	4	4
С	AET305	COMPUTER ARCHITECTURE AND EMBEDDED SYSTEMS	3-1-0	4	4
D	AET307	ANALOG INTEGRATED CIRCUITS	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	AEL331	ANALOG INTEGRATED CIRCUITS AND	0-0-3	3	2
Т	AEL333	EMBEDDED SYSTEMS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	AET302	DIGITAL SIGNAL PROCESSING	3-1-0	4	4
В	AET304	PROCESS DYNAMICS AND CONTROL	3-1-0	4	4
С	AET306	POWER ELECTRONICS	3-1-0	4	4
D	AETXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	AET308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	AEL332	POWER ELECTRONICS LAB	0-0-3	3	2
Т	AED334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT312	DIGITAL SYSTEM DESIGN	2-1-0		
	AET322	DIGITAL IMAGE PROCESSING	2-1-0		
	AET332	COMPUTER NETWORKS	2-1-0	3	3
D	AET342	BIOMEDICAL INSTRUMENTATION	2-1-0		
	AET352	REAL TIME OPERATING SYSTEMS	2-1-0		
	AET362	OPTOELECTRONIC DEVICES	2-1-0	1	
	AET372	INTERNET OF THINGS	2-1-0		

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks

Split up for CIE

Attendance

Guide

Project Report

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

: 10 : 15

:10

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	AET401	COMMUNICATION ENGINEERING	2-1-0	3	3
В	AETXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	AETXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	AEL411	PROCESS CONTROL LAB	0-0-3	3	2
Т	AEQ413	SEMINAR	0-0-3	3	2
U	AED415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AFT412		210		
	AET413	NONLINEAR AND ADAPTIVE CONTROL SYSTEMS	2-1-0		
В	AET423	SCADA AND DISTRIBUTED CONTROL SYSTEM	2-1-0	3	3
	AET433	ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	2-1-0		
	AET443	FPGA BASED SYSTEM DESIGN	2-1-0		
	AET453	PYTHON FOR SIGNAL AND IMAGE PROCESSING	2-1-0		
	AET463	COMPUTER NUMERICAL CONTROL	2-1-0		
	AET473	DATA STRUCTURES AND ALGORITHMS	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of AEI for students of other undergraduate branches offered in the college under KTU

AND ARAINI II HOAN ANA

	1.			N 1 1 1 1 1	
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
		TKHVED VE	TV.		
	AET415	INSTRUMENTATION SYSTEMS	2-1-0		
	AET425	BIOMEDICAL ENGINEERING	2-1-0	3	3
С	AET435	MEMS	2-1-0		
				-	
	AET445	ROBOTICS AND INDUSTRIAL	2-1-0		
		AUTOMATION			

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50

Attendance	: 10
Guide	: 20
Technical Content of the Report	: 30
Presentation	: 40

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative

study in the broad field of Applied Electronics & Instrumentation Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

- **Survey and study of published literature on the assigned topic;**
- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- **I** Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
The evaluation committee comprises HoD or a senior facul	ltv memb

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	AET402	VLSI CIRCUIT DESIGN	2-1-0	3	3
В	AETXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	AETXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	AETXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	AET404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	AED416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	1	TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COUR <mark>S</mark> ES	L-T-P	HOURS	CREDIT
	AET414	ANN AND DEEP LEARNING	2-1-0		
	AET424	SOFT COMPUTING	2-1-0		
	AET434	BIOINFORMATICS	2-1-0	3	3
В	AET444	SPEECH AND AUDIO PROCESSING	2-1-0		
	AET <mark>454</mark>	WIRELESS SENSOR NETWORKS	2-1-0		
	AET464	NANOELECTRONICS	2-1-0		
	AET474	INTEGRATED OPTICS AND PHOTONIC	2-1-0		
		SYSTEMS			

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AET416	INDUSTRIAL DRIVES AND CONTROL	2-1-0		
	AET426	CONTROL OF POWER CONVERTERS	2-1-0	-	
	AET436	AVIATION ELECTRONICS	2-1-0	3	3
C	AET446	DIGITAL CONTROL SYSTEM	2-1-0		
	AET456	POWER PLANT INSTRUMENTATION	2-1-0		
	AET466	MEMS	2-1-0		
	AET476	ROBOTICS AND INDUSTRIAL	2-1-0]	
		AUTOMATION			

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT418	MECHATRONICS	2-1-0		
	AET428	AUTOMOTIVE ELECTRONICS	2-1-0		
	AET438	CYBER SECURITY	2-1-0	3	3
D	AET448	INSTRUMENTATION AND CONTROL FOR PETROCHEMICAL INDUSTRIES	2-1-0	tich (
	AET458	WIRELESS COMMUNICATION	2-1-0	N.	
	AET468	OPTICAL INSTRUMENTATION	2-1-0		
	AET478	RENEWABLE ENERGY TECHNOLOGY	2-1-0	C. Berger C.	

PROGRAM ELECTIVE V

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.

UNIVERSITY

- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. Project Phase II: The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three member committee: 40(The final evaluation committee and a senior faculty from a sister department. The same

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

committee will conduct comprehensive course viva for 50 marks).

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv)There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi)The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in **Applied Electronics and Instrumentation** can opt to study the courses listed below:

S e	Basket I				1	Basket II			Basket III				
m es te r	COURSE NO.	COURSE NAME	HO UR S	C R E D I T	COURSE NO.	COURSE	H O U R S	CR E DI T	COURSE NO.	COURSE NAME	H O U R S	CREDI T	
S3	AET281	INTRODUCTIO N TO SIGNALS & SYSTEMS	4	4	AET283	DIGITAL CIRCUIT DESIGN	4	4	AET285	INTRODUCTION TO MEASUREMENTS AND INSTRUMENTATIO N	4	4	
S4	AET282	INTRODUCTIO N TO DIGITAL SIGNAL PROCESSING	4	4	AET284	INTRODUCTI ON TO ANALOG CIRCUITS	4	4	AET286	INTRODUCTION TO INDUSTRIAL INSTRUMENTATIO N	4	4	

S5	AET381	DIGITAL	4	4	AET383	POWER	4	4	AET385	CONTROL SYSTEMS	4	4
		IMAGE				ELECTRONIC						
		PROCESSING				S						
S6	AET382	SOFT	4	4	AET384	MEMS	4	4	AET386	PROCESS CONTROL	4	4
		COMPUTING										
S 7	AED481	MINIPROJECT	4	4	AED481	MINIPROJEC	4	4	AED481	MINIPROJECT	4	4
3/	ALD401	WIINIP ROJECT	4	4	ALD401	T	4	4	ALD401	WIINIFROJECT	4	4
		The Party of the local division of the local								Concernsion of the local division of the loc		
		202100	- 63		2414		0	1.0	10.00	A.A.I.I		
S8	AED482	MINIPROJECT	4	4	AED482	MINIPROJEC	4	4	AED482	MINIPROJECT	4	4
	_	and the second s			1.11	Т			1.774			

APPLIED ELECTRONICS & INSTRUMENTATION

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

Trank.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a

APPLIED ELECTRONICS & INSTRUMENTATION

mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.

- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for Honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B. Tech Honours in APPLIED ELECTRONICS AND INSTRUMENTATION can opt to study the courses listed below:

Se m		Group I	_			Group II	5		2	Group III		
es te r	COURSE NO.	COURSE NAME	H O U R S	C R E D I T	COURSE NO.	COURSE NAME	H O U R S	C R E D I T	COURSE NO.	COURSE NAME	H O U R S	C R D I T
S4	AET292	INSTRUMEN TATION SYSTEM DESIGN	4	4	AET294	SYSTEM DESIGN USING VERILOG	4	4	AET296	LINEAR ALGEBRA	4	4
S5	AET393	OPTIMIZATIO N TECHNIQUES	4	4	AET395	ARM ARCHITECTURE DESIGN	4	4	AET397	WAVELETS	4	4
S6	AET394	PWM SCHEME FOR POWER CONVERTERS	4	4	AET396	MIXED CIRCUIT DESIGN	4	4	AET398	COMPUTER VISION	4	4
S7	AET495	ADVANCED CONTROL THEORY	4	4	AET497	VLSI STRUCTURES FOR SIGNAL PROCESSING	4	4	AET499	ESTIMATION AND DETECTION	4	4

S8	AED496	MINIPROJEC	4	4	AED496	MINIPROJECT	4	4	AED496	MINIPROJECT	4	4
		Т										

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- **Values and Ethics**: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- **Leadership, Communication and Teamwork**: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities & Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH AUTOMOBILE ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	РСС	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50					50		
Credits Activity	for				2					2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project b <mark>ased courses (M</mark> ajor, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	Sl.No	Department	Course Prefix
	ASPER - A 375	1752	17	description of the state	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
_, _	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
В 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
-	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	MET201	MECHANICS OF SOLIDS	3-1-0	4	4
С	AUT201	AUTOMOTIVE CHASSIS	3-1-0	4	4
D	AUT203	ENGINEERING THERMODYNAMICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	AUL201	AUTOMOBILE LAB I	0-0-3	3	2
Т	MEL203	MATERIALS TESTING LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	1	26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

10.00

2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

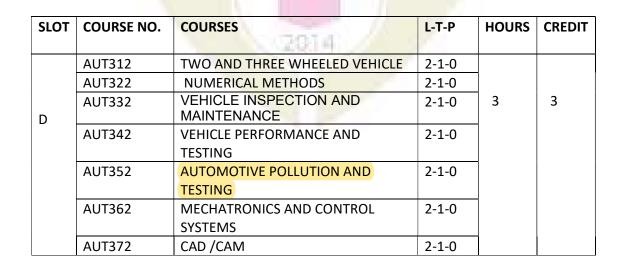
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	AUT202	FLUID MECHANICS AND MACHINERY	3-1-0	4	4
С	AUT204	AUTO POWER PLANT	3-1-0	4	4
D	AUT206	AUTOMOTIVE TRANSMISSION	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MEL202	FM & HM LAB	0-0-3	3	2
Т	AUL202	AUTOMOBILE LAB II	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL	1	26/30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesn't opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	AUT301	THEORY OF MACHINES	3-1-0	4	4
В	AUT303	MANUFACTURING PROCESS	3-1-0	4	4
С	AUT305	HYBRID AND FUEL CELL VEHICLES	3-1-0	4	4
D	AUT307	MATERIAL SCIENCE AND METALLURGY	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS &	3-0-0	3	3
,	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	MUL331	PRODUCTION ENGINEERING LAB	0-0-3	3	2
Т	MEL333	THERMAL ENGINEERING LAB-I	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
	_	TOTAL	0	27/31	23/27


NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade-in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MET302	HEAT & MASS TRANSFER	3-1-0	4	4
В	AUT304	AUTOMOTIVE ELECTRICAL AND ELECTRONICS	3-1-0	4	4
С	AUT306	AUTOMOTIVE COMPONENTS DESIGN	3-1-0	4	4
D	AUTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	AUT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED DESIGN & ANALYSIS LAB	0-0-3	3	2
Т	AUL334	AUTOMOBILE LAB III	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL	2	25/29	23/27

PROGRAM ELECTIVE I

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	AUT401	ADVANCED IC ENGINES	2-1-0	3	3
В	AUTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	AUTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	AUL411	AUTOMOBILE LAB IV	0-0-3	3	2
Т	AUQ413	SEMINAR	0-0-3	3	2
U	AUD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT413	ALETERNATE ENERGY SOURCES FOR AUTOMOBILE	2-1-0		
	AUT423	VEHICLE AERODYNAMICS	2-1-0	3	3
В	AUT433	THEORY OF VIBRATIONS	2-1-0		
	AUT443	MARKETING MANAGEMENT	2-1-0		
	AUT453	DESIGN OF MACHINE ELEMENTS	2-1-0		
	AUT463	VEHICLE DESIGN DATA	2-1-0		
		CHARACTERISTICS			
	AUT473	HEATING VENTILATION AND AIRCONDITIONING	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by **the Department of AUTOMOBILE ENGINEERING for students of other undergraduate branches offered in the college.**

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT415	MODERN AUTOMOTIVE TECHNOLOGY	2-1-0		
	AUT425	HYBRID AND ELECTRIC VEHICLES	2-1-0	A. Alexandre	
	AUT435	AUTOMOTIVE ERGONOMICS AND	2-1-0	3	3
С		SAFETY			
	AUT445	AVG AND AUTONOMOUS VEHICLES	2-1-0		
	AUT455	COMPUTER SIMULATION AND	2-1-0		
		ANALYSIS OF AUTOMOTIVE SYSTEMS			

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20

Guide	: 20
Technical Content of the Report	: 30
Presentation	: 40

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Automobile Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

- Survey and study of published literature on the assigned topic;
- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks. 100, only Cit, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

Total marks: 100 only CIE minimum required to pass 50

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	AUT402	VEHICLE DYNAMICS	2-1-0	3	3
В	AUTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	AUTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	AUTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	AUT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	AUD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT414	SPECIAL TYPES OF VEHICLES	2-1-0		
	AUT424	ENGINE AND VEHICLE MANAGEMENT	2-1-0		
		SYSTEM		3	3
В	AUT434	ADVANCED METAL JOINING	2-1-0		
		TECHNIQUES			
	AUT444	AGV AND AUTONOMOUS VEHICLE	2-1-0		
	AUT454	SUPPLY CHAIN MANAGEMENT	2-1-0		
	AUT464	AEROSPACE ENGINEERING	2-1-0		
	AUT474	METROLOGY AND	2-1-0		
		MEASUREMENTS			

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT416	OPERATIONS MANAGEMENT IN AUTO INDUSTRY	2-1-0		
С	AUT426	AUTOMOTIVE COMFORT AND SAFETY ENGINEERING	2-1-0	3	3
	AUT436	PRODUCT DESIGN AND LIFECYCLE	2-1-0		

	MANAGEMENT	
AUT446	ADVANCED AUTOMOTIVE	2-1-0
	MANUFACTURING MATERIALS	
AUT456	TOTAL QUALITY MANAGEMENT	2-1-0
AUT466	VEHICLE MAINTENANCE	2-1-0
AUT476	MACHINE LEARNING	2-1-0

PROGRAM ELECTIVE V A REPORT OF THE RECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT418	VEHICLE TRANSPORT AND FLEET MANAGEMENT	2-1-0		
D	AUT428	VEHICLE BODY ENGINEERING AND SSFETY	2-1-0	3	3
	AUT438	POWER PLANT ENGINEERING	2-1-0		
	AUT448	ADVANCED METAL JOINING TECHNIQUES	2-1-0		
	AUT458	SIMULATION AND ANALYSIS OF AUTO COMPONENTS	2-1-0		
	AUT468	HYDRAULICS AND PNEUMATICS	2-1-0		
	AUT478	ADVANCED METAL CASTING	2 -1 -0		

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for

the student(s) in R&D work and technical leadership. The assignment to normally include:

- In depth study of the topic assigned in the light of the Report prepared under Phase I;
- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three member committee: 40(The final evaluation committee comprises Project coordinator, expert fromIndustry/research Institute and a senior faculty from a sister department. The samecommittee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

esto

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required

courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses.**

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in AUTOMOBILE ENGINEERING Branch can opt to study the courses listed below:

	2014				
SEMESTER	COURSE NO.	COURSE NAME	HOURS	CREDIT	
S3	AUT281	FUNDAMENTALS OF AUTOMOBILES ENGINEERING	4	4	
S4	AUT282	AUTOMOTIVE CHASSIS AND ENGINE COMPONENTS	4	4	
S5	AUT381	DYNAMICS OF AUTOMOBILES	4	4	

S6	AUT382	MODERN AUTOMOTIVE TECHNOLOGY	4	4
S7	AUD481	MINIPROJECT	4	4
S8	AUD482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

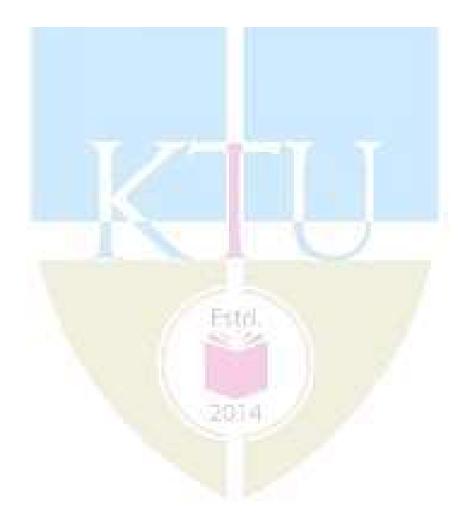
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

HTA!

- (i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.

- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in AUTOMOBILE** can opt to study the courses listed below:

SEMESTER	GROUP I			
	Course No.	Course Name	HOURS	CREDIT
S4	AUT292	INCOMPRESSIBLE AND COMPRESSIBLE FLOWS	4	4
S5	AUT393	ADVANCED THEORY OF VIBRATIONS	4	4
S6	AUT394	IC ENGINES AND ADVANCED COMBUSTION STRATEGIES	4	4
S7	AUT495	SIMULATION AND ANALYSIS OF IC ENGINE PROCESS	4	4
S8	AU <mark>D496</mark>	MINIPROJECT	4	4


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch mates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

• Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.

- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech BIOMEDICAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50				1	50		
Credits Activity	for				2					2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table 1: Code for the courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No Department		Course Prefix	Sl.No	Department	Course Prefix	
	人。你们有一点了	11.01		the stand where the		
01	Aeronautical Engg	AO	16	Information Technology	IT	
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC	
03	Automobile	AU	18	Mandatory Courses	МС	
04	Biomedical Engg	BM	19	Mathematics	МА	
05	Biotechnology	BT	20	Mechanical Engg	ME	
06	Chemical Engg	СН	21	Mechatronics	MR	
07	Chemistry	СҮ	22	Metallurgy	МТ	
08	Civil Engg	CE	23	Mechanical (Auto)	MU	
09	Computer Science	CS	24	Mechanical(Prod)	MP	
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB	
11	Electronics & Biomedical	EB	26	Physics	PH	
12	Electronics & Communication	EC	27	Polymer Engg	РО	
13	Food Technology	FT	28	Production Engg	PE	
14	Humanities	HU	3	Robotics and		
			29	Automation	RA	
15	Industrial Engg	IE	30	Saf <mark>ety & F</mark> ire Engg	FS	

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDI T
А	MAT 101	LINEAR ALGEBRA & CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS A	3-1-0	4	4
·	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS & TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

 Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.

- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

-5761

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS	3-1-0	4	4
В	BMT201	BASIC ANATOMY & PHYSIOLOGY FOR BIOMEDICAL ENGINEERS	3-1-0	4	4
С	BMT203	DIGITAL ELECTRONICS	3-1-0	4	4
D	BMT205	ANALOG ELECTRONICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	BML201	DIGITAL ELECTRONICS LAB	0-0-3	3	2
Т	BML203	ANALOG ELECTRONICS LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL		26/30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	BMT202	MICROCONTROLLERS & INTERFACING	4-0-0	4	4
С	BMT204	ELECTRICAL & ELECTRONIC INSTRUMENTATION	4-0-0	4	4
D	BMT206	BIOPHYSICS	4-0-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
_, _	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	BML202	MICROCONTROLLERS & INTERFACING LAB	0-0-3	3	2
Т	BML204	BIOMEDICAL ELECTRONICS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

310.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	BMT301	ANALYTICAL & DIAGNOSTIC EQUIPMENTS	4-0-0	4	4
В	BMT303	BIOMEDICAL SIGNAL PROCESSING	3-1-0	4	4
С	BMT305	BIOSENSORS & TRANSDUCERS	4-0-0	4	4
D	BMT307	SOFT COMPUTING TECHNIQUES	4-0-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	BML331	MEDICAL COMPUTING & VIRTUAL INSTRUMENTATION LAB	0-0-3	3	2
Т	BML333	CLINICAL INSTRUMENTATION LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		27/31	23/27

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa

13404

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	BMT302	BIOMECHANICS	4-0-0	4	4
В	BMT304	THERAPEUTIC EQUIPMENTS	4-0-0	4	4
С	ВМТ306	PRINCIPLES OF MEDICAL IMAGING	4-0-0	4	4
D	BMTXXX	PROGRAM ELECTIVE I	3-0-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	BMT308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	BML332	BIOMEDICAL EQUIPMENT DISSECTION LAB	0-0-3	3	2
Т	BMD334	MINI PROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	-	TOTAL		25/29	23/27

PROGRAM ELECTIVE I

		Fetel			
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BMT312	CONTROL SYSTEMS	2-1-0		
	BMT322	MEDICAL INFORMATICS	3-0-0	3	3
D	BMT332	ADVANCED MICROPROCESSORS & MICROCONTROLLERS	3-0-0		
	BMT342	DESIGN OF BIOMEDICAL DEVICES	3-0-0		
	BMT352	BIOSTATISTICS	3-0-0		
	BMT362	NETWORK ANALYSIS	2-1-0		
	BMT372	COMMUNICATION TECHNIQUES	3-0-0		

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BOS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- Mini project: It is introduced in sixth semester with a specific objective to strengthen the 4. understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HOD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks

Split up for CIE Attendance

Guide

Project Report

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement)

: 10 : 15

:10

: 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	BMT401	PRINCIPLES OF MEDICAL IMAGE PROCESSING	3-0-0	3	3
В	BMTXXX	PROGRAM ELECTIVE II	3-0-0	3	3
C	BMTXXX	OPEN ELECTIVE	3-0-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	BML411	BIOMEDICAL SIGNAL & IMAGE PROCESSING LAB	0-0-3	3	2
Т	BMQ413	SEMINAR	0-0-3	3	2
U	BMD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BMT413	ADVANCES IN BIOMEDICAL SIGNAL PROCESSING	3-0-0		
В	BMT423	DESIGN OF LOGIC SYSTEMS	2-1-0	3	3
	BMT433	COMPUTER ORGANIZATION & ARCHITECTURE			
	BMT443	CLINICAL ENGINEERING	3-0-0		
	BMT453	BIO FLUID MECHANICS	3-0-0		
	BMT463	ARTIFICIAL NEURAL NETWORKS	3-0-0		
	BMT473	BIOMEDICAL OPTICS & BIOPHOTONICS	3-0-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of BIOMEDICAL ENGINEERING for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BMT415	BIOMEDICAL INSTRUMENTATION	2-1-0	101	
	BMT425	MEDICAL IMAGING & IMAGE PROCESSING	2-1-0	3	3
С	BMT435	ARTIFICIAL ORGANS & IMPLANTS	2-1-0		
	BMT445	ASSISTIVE MEDICAL DEVICES	2-1-0		
	-				

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50

:10

:20

: 30

:40

Attendance

Guide

Technical Content of the Report

Presentation

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Biomedical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;

- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- > Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	:30
The report evaluated by the evaluation committee	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	BMT402	BIOMATERIALS	2-1-0	3	3
В	BMTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	BMTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	BMTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	BMT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	BMD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BMT414	POWER ELECTRONICS & APPLICATIONS	3-0-0	3	3
В	BMT424	ARTIFICIAL ORGANS & IMPLANTS	3-0-0		
	BMT434	COMPUTATIONAL TECHNIQUES FOR BIOMEDICAL SCIENCES	2-1-0		
	BMT444	MEDICAL ROBOTICS	3-0-0		
	BMT454	FUNDAMENTALS OF BIOMEMS & MICROFLUIDICS	3-0-0		
	BMT464	QUANTITATIVE PHYSIOLOGY	3-0-0		
	BMT474	ADVANCED MEDICAL IMAGING & IMAGE PROCESSING TECHNIQUES	3-0-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BMT416	VLSI DESIGN	3-0-0		
С	BMT426	IMPLANTS & PROSTHETIC ENGINEERING	3-0-0	3	3
	BMT436	RADIOLOGICAL EQUIPMENTS	3-0-0	M.	
	BMT446	BIOMEDICAL TRANSPORT PHENOMENA	3-0-0	£1.,	
	BMT456	PATTERN RECOGNITION	3-0-0		
	BMT466	MECHATRONICS	3-0-0		
	BMT476	MEDICAL DEVICES <mark>, REG</mark> ULATIONS & QUALITY ASSURANCE	3-0-0		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BMT418	EMBEDDED SYSTEM DESIGN	3-0-0		
	BMT428	ASSISTIVE MEDICAL DEVICES	3-0-0	3	3
D BMT438		REHABILITATION ENGINEERING	3-0-0		
	BMT448	INTRODUCTION TO BIONANOTECHNOLOGY	3-0-0	7	
	BMT458	RELIABILITY ENGINEERING	3-0-0		
	BMT468	MODELLING OF PHYSIOLOGICAL SYSTEMS	3-0-0		
	BMT478	HUMAN FACTORS IN ENGINEERING & DESIGN	3-0-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based

on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.

- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;
 - Preparing a paper for Conference presentation/Publication in Journals, if possible;
 - Preparing a Dissertation in the standard format for being evaluated by the Department;
 - > Final Presentation before a Committee

	Total marks: 150, only CIE, minimum required to pass 75		
	Guide	: 30	
	Interim evaluation, 2 times in the semester by the evaluation cor	nmittee : 50	
	Quality of the report evaluated by the above committee	: 30	
	(The evaluation committee comprises HoD or a senior faculty m	nember, Project coordinator	ſ
	and project supervisor).		
	Final evaluation by a three member committee	: 40	
9	final evaluation committee comprises Project coordinator, exp	ert from Industry/research	I
	Institute and a contant faculty from a sister dependence. The co	المرداد والمراجع الألبان والمطلا ويرويه والمراجع	2

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv)There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in BIOMEDICAL ENGINEERING** can opt to study the courses listed below:

ATT ARTIN REAL ASA

S e m	(BION	Basket I 1EDICAL IMAGINO		Basket II REHABILITATION ENGINEERING)	Basket III (BIOMEDICAL COMPUTATIONAL METHODS)							
e st er	Course No.Course Name O R U R SH C No.Course No.No.U E R T		Course Name H C O R U E R D S I T			R No.	Course Name		C R E D I T S			
S3	BMT281	MEDICAL PHYSICS	4	4	BMT283	BIOMATERIALS	4	4	BMT285	BASIC MEDICAL SCIENCES FOR ENGINEERS	4	4
S4	BMT282	PRINCIPLES OF RADIODIAGNOSIS & RADIOTHERAPY	4	4	BMT284	ARTIFICIAL ORGANS & IMPALNTS	4	4	BMT286	NUMERICAL TECHNIQUES IN BIOMEDICAL ENGINEERING	4	4
S5	BMT381	MEDICAL IMAGING TECHNIQUES	4	4	BMT383	REHABILITATION ENGINEERING	4	4	BMT385	ARTIFICIAL INTELLIGENCE & MACHINE LEARNING TECHNIQUES	4	4
S6	BMT382	MEDICAL IMAGE PROCESSING	4	4	BMT384	IMPLANTS & PROSTHETICS ENGINEERING	4	4	BMT386	PHYSIOLOGICAL SYSTEM MODELLING	4	4
S7	BMD481	MINIPROJECT	4	4	BMD481	MINIPROJECT	4	4	BMD481	MINIPROJECT	4	4
S8	BMD482	MINIPROJECT	4		BMD482	MINIPROJECT	4		BMD482	MINIPROJECT	4	4

HONOURS

2014

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with

Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in BIOMEDICAL ENGINEERING** can opt to study the courses listed below:

		Group I		Group II	Group III							
S e m es te r	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	
S4	BMT292	BASIC SIGNALS & SYSTEMS	4	4	BMT294	BIOSENSORS	4	4	BMT296	OBJECT ORIENTED PROGRAMING	4	4
S5	BMT393	BIOSIGNAL PROCESSING	4	4	BMT395	BIOMEDICAL NANO TECHNOLOGY IN SENSOR DEVELOPMENT	4	4	BMT397	PROGRAMING USING PYTHON	4	4
S6	BMT394	DIGITAL SIGNAL PROCESSORS	4	4	BMT396	ELECTRO ANALYTICAL TECHNIQUES	4	4	BMT398	DATA SCIENCE	4	4
S7	BMT495	IMAGE & VIDEO PROCESSING	4	4	BMT497	MEMS	4	4	BMT499	ARTIFICIAL INTELLEGENCE& MACHINE LEARNING	4	4
S8	BMD496	MINIPROJECT	4	4	BMD496	MINIPROJECT	4	4	BMD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

• **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech BIOTECHNOLOGY

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

	1	2	3	4	5	6	7	8	Total
	17	21	22	22	23	23	15	17	160
		50 50							
for		2							2
									162
	for	17	17 21 50	17 21 22 50 50	17 21 22 22 50 50 50	17 21 22 22 23 50 50 50 50	17 21 22 22 23 23 50 50 50 50 50 50	17 21 22 22 23 23 15 50 50 50 50	17 21 22 22 23 23 15 17 50 50 50 50 50 50 50

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description					
Т	Theory based courses (other the lecture hours, these courses can have tutorial					
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)					
L	Laboratory based courses (where performance is evaluated primarily on the basis					
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)					
N	Non-credit courses					
D	Project based courses (Major, Mini Projects)					
Q	Seminar Courses					

Table 1: Code	for the	courses
---------------	---------	---------

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	SI.No	Department	Course Prefix
	>A+177 A-175	1751	1.1	·林晓达我们 — 从了我从前门	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics &	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS
13 14	Food Technology Humanities	FT HU	28 29	Production Engg Robotics and Automation	

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

Estd

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	BTT201	BIOPROCESS CALCULATIONS	3-1-0	4	4
С	BTT203	MICROBIOLOGY	3-1-0	4	4
D	BTT205	FLUID FLOW AND PARTICLE TECHNOLOGY	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	BTL201	MICROBIOLOGY LAB	0-0-3	3	2
Т	BTL203	FLUID FLOW AND PARTICLE	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	1	26/30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	BTT202	CHEMICAL AND BIOLOGICAL REACTION ENGINEERING	3-1-0	4	4
C	BTT204	PRINCIPLES OF BIOCHEMISTRY	3-1-0	4	4
D	BTT206	BIOPROCESS ENGINEERING	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	BTL202	BIOCHEMISTRY LAB	0-0-3	3	2
Т	BTL204	ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	-	TOTAL	$\overline{\partial}$	26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

(2014)

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	BTT301	INDUSTRIAL BIOPROCESS TECHNOLOGY	3-1-0	4	4
В	BTT303	MASS TRANSFER OPERATIONS	3-1-0	4	4
С	BTT305	MOLECULAR BIOLOGY	3-1-0	4	4
D	BTT307	THERMODYNAMICS AND HEAT TRANSFER	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	BTL331	BIOPROCESS ENGINEERING LAB	0-0-3	3	2
Т	BTL333	MOLECULAR BIOLOGY LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

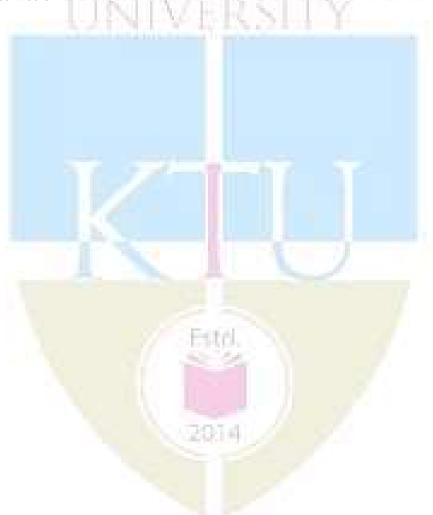
NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	BTT302	BIOINFORMATICS	2-0-2	4	4
В	BTT304	DOWNSTREAM PROCESSING	3-1-0	4	4
С	BTT306	BIOREACTOR CONTROL AND	3-1-0	4	4
D	BTTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	BTT308		1-0-0	1	1
S	BTL332	DOWNSTREAM PROCESSING LAB	0-0-3	3	2
Т	BTL334	HEAT AND MASS TRANSFER LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I


SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BTT312	ANIMAL & PLANT CELL TECHNOLOGY	2-1-0		
	BTT322	ANALYTICAL TECHNIQUES IN	<mark>2-1</mark> -0		
		BIOTECHNOLOGY	100	3	3
D	BTT332	CELL BIOLOGY	2-1-0		
	BTT342	PROJECT ENGINEERING AND	2-1-0		
		PROCESS PLANT ECONOMICS			
	BTT352	BASICS IN IMMUNOLOGY	2-1-0		
	BTT362	BIOSTATISTICS	2-1-0		

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

BIOTECHNOLOGY

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	BTT401	PROCESS EQUIPMENT AND PLANT DESIGN	2-1-0	3	3
В	BTTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	BTTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	BTL411	REACTION ENGINEERING AND PROCESS CONTROL LAB	0-0-3	3	2
Т	BTQ413	SEMINAR	0-0-3	3	2
U	BTD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	22	24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BTT413	ENERGY ENGINEERING	2-1-0		
	BTT423	GENETIC ENGINEERING	2-1-0		
	BTT <mark>433</mark>	PROTEOMICS & PROTEIN	2-1-0	3	3
В		ENGINEERING			
	BTT443	BIO NANOTECHNOLOGY	2-1-0		
	BTT453	MODELING OF TRANSFER PROCESSES	<mark>2-1-</mark> 0	1	
	BTT463	APPLIED MICROBIAL TECHNOLOGY	2-1-0]	

1. OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of BT for students of other undergraduate branches offered in the college.

2014

BIOTECHNOLOGY

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BTT415	INDUSTRIAL BIOTECHNOLOGY	2-1-0		
	BTT425	BASICS IN BIOINFORMATICS & DRUG DESIGN	2-1-0	3	3
c	BTT435	SUSTAINABLE ENERGY PROCESS	2-1-0	5	5
C	BTT445	OCCUPATIONAL HEALTH AND GENERAL SAFETY	2-1-0		
	BTT455	WASTE WATER ENGINEERING	2-1-0	tich I	

1.*All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.

2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum requ	ired to pass 50
Attendance	: 10
Guide	: 20
Technical Content of the Report : 30	
Presentation	: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Bio Technology either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - > Preparing an Action Plan for conducting the investigation, including team work;
 - > Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - Preparing a Written Report on the Study conducted for presentation to the Department;
 - Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
The evaluation committee comprises HoD or a senior faculty member.	Project

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	BTT402	ENVIRONMENTAL BIOTECHNOLOGY	2-1-0	3	3
В	BTTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	BTTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	вттххх	PROGRAM ELECTIVE V	2-1-0	3	3
Т	BTT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	BTD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
В	BTT414	FOOD PROCESS TECHNOLOGY	2-1-0		
	BTT424	BIOREFINERY ENGINEERING	2-1-0	3	3
	BTT434	BIOPHARMACEUTICAL TECHNOLOGY	2-1-0		
	BT <mark>T444</mark>	EFFLUENT/ WASTE WATER	2-1-0		
		TREATMENT			
	BTT454	DAIRY PROCESS TECHNOLOGY	2-1-0		
	BTT464	OPERATIONAL RESEARCH	2-1-0		

PROGRAM ELECTIVE IV

2014

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BTT416	CANCER BIOLOGY	2-1-0		
	BTT426	ADVANCED SEPARATION PROCESSES	2-1-0		
	BTT436	BIOMATERIALS , TISSUE	2-1-0	3	3
C		ENGINEERING & STEM CELLS			
	BTT446	BIOPROCESS INSTRUMENTATION	2-1-0		
	BTT456	DRUG DESIGN AND DEVELOPMENT	2-1-0		
	BTT466	CLINICAL RESEARCH & DRUG TESTING	2-1-0		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	BTT418	PROCESS SAFETY AND BIOETHICS	2-1-0		
	BTT428	BIOBUSINESS	2-1-0		
	BTT438	ENTREPRENEURSHIP & IPR	2-1-0	3	3
D	BTT448	BIOPHYSICS & BIOSENSORS	2-1-0	a state of	
	BTT458	BIOPROCESS QUALITY CONTROL	2-1-0	WA !!	
	BTT468	MODELLING AND SCALE UP OF	2-1-0		
		BIOREACTORS	A. 4. P		

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;

- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three member committee: 40(The final evaluation committee comprises Project coordinator, expert fromIndustry/research Institute and a senior faculty from a sister department. The samecommittee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified **by M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for **B.Tech Minor in BIOTECHNOLOGY branch** can opt to study the courses listed below:

Se me		BASKET I				BASKET II				BASKET III		
ste r	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S3	BTT281	UPSTREAM PROCESSING	4	4	BTT283	CELL BIOLOGY AND BIOMOLECULES	4	4	BTT285	HEALTH SAFETY ENVIRONMENT	4	4
S4	BTT282	FERMENTATION TECHNOLOGY	4	4	BTT284	INTRODUCTION TO MOLECULAR BIOLOGY	4	4	BTT286	PROCESS SAFETY	4	4
S5	BTT381	DOWN STREAM PROCESSING	4	4	BTT383	BIOINFORMATICS & GENOMICS TECHNOLOGY	4	4	BTT385	INDUSTRIAL SAFETY MANAGEMENT	4	4
S6	BTT382	PROCESS VALIDATION AND QUALITY CONTROL	4	4	BTT384	MOLECULAR DIAGNOSTICS & DRUG DESIGN	4	4	BTT386	ACCIDENT INVESTIGATION	4	4
S7	BTD481	MINIPROJECT	4	4	BTD481	MINIPROJECT	4	4	BTD481	MINIPROJECT	4	4
S8	BTD482	MINIPROJECT	4	4	BTD482	MINIPROJECT	4	4	BTD482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

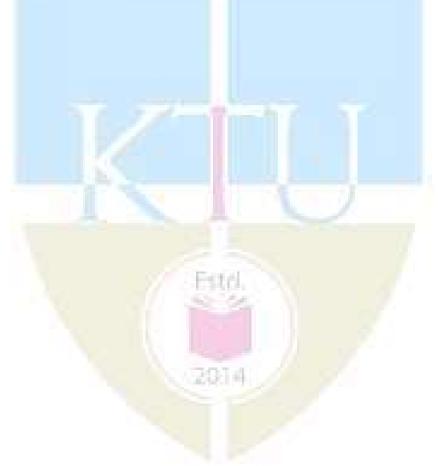
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

BIOTECHNOLOGY

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in Biotechnology** can opt to study the courses listed below

		GROUP I		GROUP	GROUP II				111			
S e m es te r	Course No	COURSE NAME	H O U R S	C R E D I T	Course No	COURSE NAME	H O U R S	C R E D I T	Course No	COURSE NAME	H O U R S	
S4	BTT292	CELL SIGNALLING	4	4	BTT294	BIORESOURCE TECHNOLOGY	4	4	BTT296	BIOPROCESS INSTRUMENTATION	4	4
S5	BTT393	IMMUNO TECHNOLOGY	4	4	BTT395	ENVIRONMENTAL POLLUTION MONITORING AND CONTROL	4	4	BTT397	MODELING OF BIOREACTORS	4	4
S6	BTT394	CLINICAL IMMUNOLOGY/ MOLECULAR MEDICINE	4	4	BTT396	HAZARDOUS WASTE MANAGEMENT	4	4	BTT398	NUMERICAL TECHNIQUES IN BIOPROCESSES	4	4
S7	BTT495	MOLECULAR MODELING AND SIMULATION	4	4	BTT497	BIOPROCESS SAFETY AND HAZARD ASSESSMENT	4	4	BTT499	DESIGN AND ANALYSIS OF BIOREACTORS	4	4
S8	BTD496	MINIPROJECT	4	4	BTD496	MINIPROJECT	4	4	BTD496	MINIPROJECT	4	4


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their

batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech CHEMICAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	162
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50 50 -							
Credits Activity	for				2	·				2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix
	A-111 A-12	1757		ALANA ALANA	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Saf <mark>ety & Fire En</mark> gg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
-	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
-,-	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
,	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	- 1	TOTAL		28/29	21

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1. Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1. Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend

Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT	ENGINEERING MATHEMATICS	3-1-0	4	4
В	CHT 201	CHEMISTRY FOR PROCESS	3-1-0	4	4
	1.000	ENGINEERING			
C	CHT 203	CHEMICAL PROCESS PRINCIPLES	3-1-0	4	4
D	CHT 205	FLUID AND PARTICLE MECHANICS	3-1-0	4	4
E 1/2	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	CHL 201	CHEMICAL TECHNOLOGY & ENVIRONMENTAL ENGINEERING LAB	0-0-3	3	2
Т	CHL 203	CHEMISTRY LAB FOR PROCESS ENGINEERING	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
				26/30	22/26
		TOTAL	15		-

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT	ENGINEERING MATHEMATICS	3-1-0	4	4
В	CHT 202	CHEMICAL ENGINEERING	3-1-0	4	4
	1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	THERMODYNAMICS			
C	CHT 204	HEAT TRANSFER OPERATIONS	3-1-0	4	4
D	CHT 206	PARTICLE TECHNOLOGY	3-1-0	4	4
E 1/2	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 202	CONSTITUTION OF INDIA	2-0-0	2	
S	CHL 202	FLUID AND PARTICLE MECHANICS	0-0-3	3	2
Т	CHL 204	PARTICLE TECHNOLOGY LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26
			1		

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

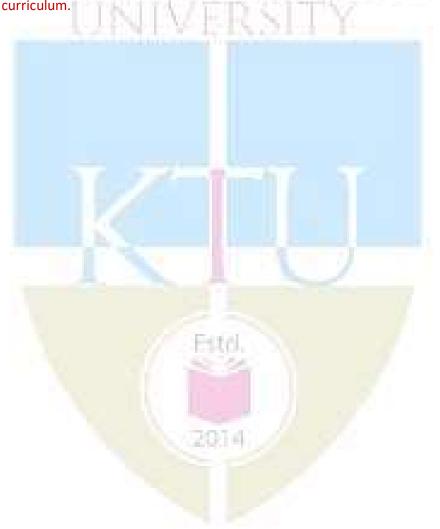
SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CHT 301	MASS TRANSFER OPERATIONS-I	3-1-0	4	4
В	CHT 303	ENVIRONMENTAL ENGINEERING	3-1-0	4	4
С	CHT 305	CHEMICAL REACTION ENGINEERING	3-1-0	4	4
D	CHT 307	INSTRUMENTATION AND PROCESS	3-1-0	4	4
E 1/2	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
,	HUT 310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN 301	DISASTER MANAGEMENT	2-0-0	2	
S	CHL 331	HEAT TRANSFER OPERATIONS LAB	0-0-3	3	2
Т	CHL 333	PROCESS CONTROL LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	the second second	TOTAL		27/31	23/27
	-		25		

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CHT 302	MASS TRANSFER OPERATIONS-II	3-1-0	4	4
В	СНТ 304	TRANSPORT PHENOMENA	3-1-0	4	4
C	CHT 306	CHEMICAL TECHNOLOGY	3-1-0	4	4
D	СНТ ХХХ	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT 310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	CHT 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	CHL 332	MASS TRANSFER OPERATIONS LAB	0-0-3	3	2
Т	CHL 334	CHEMICAL REACTION ENGINEERING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	1	TOTAL	5	25/29	23/27


PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT						
	CHT312	BIOCHEMICAL ENGINEERING	2-1-0								
	CHT322	ENERGY ENGINEERING	2-1-0								
	CHT332	NUMERICAL METHODS FOR PROCESS	3	3							
D		ENGINEERS									
	CHT342	MATERIAL SCIENCE AND	2-1-0								
		ENGINEERING	GY ENGINEERING2-1-0ERICAL METHODS FOR PROCESS NEERS2-1-0ERIAL SCIENCE AND NEERING2-1-0ATIONS RESEARCH2-1-0CESS INSTRUMENTATION LLYST SCIENCE AND CATALYTIC2-1-0								
	CHT352	OPERATIONS RESEARCH	RGY ENGINEERING2-1-0MERICAL METHODS FOR PROCESS2-1-0INEERS2'ERIAL SCIENCE AND2-1-0INEERING2-1-0RATIONS RESEARCH2-1-0CESS INSTRUMENTATION2-1-0ALYST SCIENCE AND CATALYTIC2-1-0								
	CHT362	PROCESS INSTRUMENTATION	ATIONS RESEARCH 2-1-0								
	CHT372	CATALYST SCIENCE AND CATALYTIC	2-1-0								
		PROCESSES									

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CHT 401	CHEMICAL PROCESS EQUIPMENT DESIGN I	2-1-0	3	3
В	CHT XXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	CHT XXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN 401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	CHL 411	PROCESS SIMULATION LAB	0-0-3	3	2
Т	CHQ 413	SEMINAR	0-0-3	3	2
U	CHD 415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	-	-2	24/28	15/19	

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COUR <mark>S</mark> ES	L-T-P	HOURS	CREDIT
	CHT413	FOOD PROCESSING AND TECHNOLOGY	2-1-0		
В	CHT423	OIL AND NATURAL GAS	2-1-0	3	3
	CHT433	PROCESS MODELLING AND SIMULATION	2-1-0		
	CHT443	CORROSION ENGINEERING	2-1-0		
	CHT453	PROJECT ENGINEERING	2-1-0		
	CHT463	INTRODUCTION TO DATA ANALYSIS	2-1-0		
	CHT473	FLUIDIZATION ENGINEERING	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of CHEMICAL ENGINEERING for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CHT415	ENERGY TECHNOLOGY AND	2-1-0		
C		ENERGY MANAGEMENT			
C	CHT 425	PETROLEUM RESOURCES AND	2-1-0	2	3
C		PETROCHEMICALS		5	5
	CHT 435	PROCESS SAFETY	ND 2-1-0 AND 2-1-0 2-1-0 IGN 2-1-0		
		ENGINEERING	_		
	CHT 445	PIPING AND PIPELINE DESIGN	2-1-0		
		FOR PROCESS INDUSTRIES		100	
		and the state of the			

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

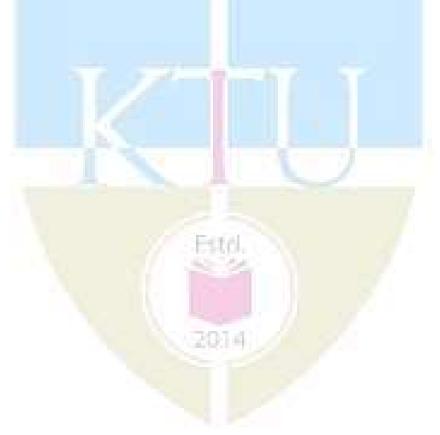
:10

:20

Total marks: 100, only CIE, minimum required to pass 50

Attendance Guide

Technical Content of the Report : 30 :40


Presentation

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Chemical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;

- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50Guide: 30Interim evaluation by the evaluation committee: 20Final Seminar: 30The report evaluated by the evaluation committee: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CHT 402	CHEMICAL PROCESS EQUIPMENT DESIGN II	2-1-0	3	3
В	CHT XXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	СНТ ХХХ	PROGRAM ELECTIVE IV	2-1-0	3	3
D	СНТ ХХХ	PROGRAM ELECTIVE V	2-1-0	3	3
Т	CHT 404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	CHD 416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT							
	CHT414	AIR POLLUTION MONITORING & CONTROL	2-1-0									
	CHT424	PETROLEUM REFINERY ENGINEERING	2-1-0	3	3							
В	CHT434	COMPUTATIONAL FLUID DYNAMICS	2-1-0									
	CHT444	POLYMER TECHNOLOGY	ROLEUM REFINERY ENGINEERING2-1-0MPUTATIONAL FLUID DYNAMICS2-1-0LYMER TECHNOLOGY2-1-0DCESS UTILITY AND PIPING2-1-0GINEERING									
	CH <mark>T454</mark>	PROCESS UTILITY AND PIPING	TROLImage: Constraint of the second systemROLEUM REFINERY ENGINEERING2-1-0PUTATIONAL FLUID DYNAMICS2-1-0PMER TECHNOLOGY2-1-0CESS UTILITY AND PIPING2-1-0INEERING2-1-0GS AND PHARMACEUTICALS2-1-0									
		ENGINEERING										
	CHT464	DRUGS AND PHARMACEUTICALS	2-1-0									
		TECHNOLOGY										
	CHT474	ELECTROCHEMICAL ENGINEERING	2-1-0									

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CHT416	ECONOMICS & MANAGEMENT OF CHEMICAL INDUSTRIES	2-1-0		
	CHT426	PETROCHEMICALS AND FERTILIZERS	2-1-0	3	3
С	CHT436	MATHEMATICAL METHODS IN	2-1-0		
		PROCESS ENGINEERING			
	CHT446	COMPOSITE MATERIALS	2-1-0		
	CHT456	CERAMIC TECHNOLOGY	2-1-0]	
	CHT466	TOTAL QUALITY MANAGEMENT	2-1-0		
	CHT476	ENZYME ENGINEERING	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CHT418	SOLID WASTE MANAGEMENT	2-1-0		
	CHT428	NONCONVENTIONAL PETROLEUM	2-1-0		
		RESOURCES		3	3
D	CHT438	PROCESS OPTIMIZATION	2-1-0		
	CHT448	NANOMATERIALS AND	2-1-0	1.00	
		NANOTECHNOLOGY		1000	
	CHT458	SAFETY ENGINEERING OF PROCESS	2-1-0		
	1.1 Bases	PLANTS		A. Andrewson	
	CHT468	NOVEL SEPARATION TECHNIQUES	2-1-0		
	CHT478	FUEL CELL TECHNOLOGY	2-1-0		

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;

Final Presentation before a Committee	
Total marks: 150, only CIE, minimum required to pass 75	
Guide	: 30
Interim evaluation, 2 times in the semester by the evaluation committe	e :50
Quality of the report evaluated by the above committee	: 30
(The evaluation committee comprises HoD or a senior faculty mer	mber, Project
coordinator and project supervisor).	
Final evaluation by a three member committee	: 40
(The final evaluation committee comprises Project coordinator,	expert from
Industry/research Institute and a senior faculty from a sister departmen	it).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card. (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses.**

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in CHEMICAL ENGINEERING can opt to study the courses listed below**:

S e m e	Minor	BASKET I in Chemical Engineer (Process Safety)	ing			BASKET II in Chemical Engineeri eum and Petrochemic	BASKET III Minor in Chemical Engineering (Materials Science and Engineering)					
st er	Course No.	Course Name	H O U R S	CREDIT	Course No.	Course Name	H C O F U E R C S I		Course No.	Course Name	H O U R S	C R D I T
S3	CHT281	INTRODUCTION TO CHEMICAL ENGINEERING	4	4	CHT281	INTRODUCTION TO CHEMICAL ENGINEERING	4	4	CHT281	INTRODUCTION TO CHEMICAL ENGINEERING	4	4
S4	CHT 282	SAFETY ENGINEERING OF PROCESS PLANTS	4	4	CHT 284	FUNDAMENTALS OF OIL AND NATURAL GAS ENGINEERING	4	4	CHT 286	MATERIAL SCIENCE AND ENGINEERING	4	4
S5	CHT 381	OCCUPATIONAL HEALTH AND INDUSTRIAL HYGIENE	4	4	CHT 383	PETROLEUM REFINERY ENGINEERING	4	4	CHT 385	POLYMER TECHNOLOGY	4	4
S6	CHT 382	HAZARD AND RISK ASSESSMENT	4	4	CHT 384	PETROCHEMICAL TECHNOLOGY	4	4	CHT 386	NANO MATERIALS AND NANO TECHNOLOGY	4	4
S7	CHD 481	MINI PROJECT	4	4	CHD 481	MINI PROJECT	4	4	CHD 481	MINI PROJECT	4	4
S8	CHD 482	MINI PROJECT	4	4	CHD 482	MINI PROJECT	4	4	CHD 482	MINI PROJECT	4	4

HONOURS

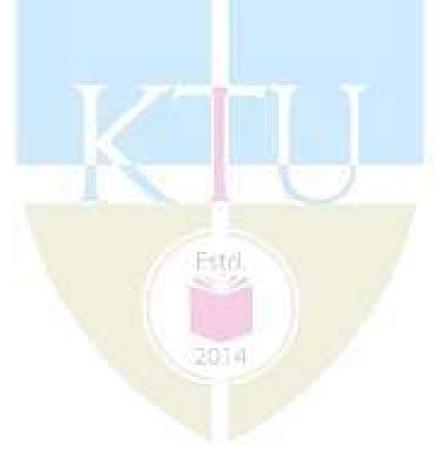
Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in CHEMICAL ENGINEERING** can opt to study the courses listed below:

		GROUP	1	Ŀ.	H	2211-2	GRO	UP	0			-	GROU	IP III		
S e m es te r	Course No	Course I	Name	H O U R S	C R E D I T	Course No	Cou	rse	Name	H O U R S	C R E D I T	Course No	Cou	urse Name	H O U R S	R
\$4	CHT292	COMPUT METHOD CHEMICA ENGINEE	IN AL	4	4	CHT 294	METH		MENTAL	4	4	CHT 296	OF	RN METHODS	4	4
S5	СНТ393	ADVANC TRANSFE		4	4	CHT 395	PHYSI CHEM METH ENVIR ENGIN	ICA ODS ONI	S IN MENTAL	4	4	CHT 397	SOFT C TECHN	OMPUTING IQUES	4	4
S6	CHT394	CHEMICA REACTIO ENGINEE	N	4	4	CHT 396	ADVA WAST TREAT TECHN	EW, ME	ATER NT	4	4	CHT 398	MODE THEOR	RN CONTROL Y	4	4
S7	CHT495	PROCESS INTEGRA		4	4	CHT 497	PROCI FOR WAST TREAT	EW		4	4	CHT 499	ADVAN CONTR	CED PROCESS OL	4	4
S8	CHD49 6	MINI PRO	DJECT	4	4	CHD 496	MINI	PRO	JECT	4		CHD 496	MINI P	ROJECT	4	4


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their

batch mates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.TECH CIVIL ENGINEERING

SI. No	Category	Code	Credi s	
1	Humanities and Social Sciences including Management courses	НМС	8	
2	Basic Science courses	BSC	26	
3	Engineering Science Courses	ESC	22	
4	Program Core Courses	PCC	76	
5	Program Elective Courses	PEC	15	
6	Open Elective Courses	OEC	3	
7	Project work and Seminar	PWS	10	
8	Mandatory Non-credit Courses (P/F) with grade	MNC		
9	Mandatory Student Activities (P/F)	MSA	2	
	Total Mandatory Credits	1	62	
10	Value Added Course (Optional)	VAC	20	

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points		50		0.25	14	1	50		
Credits for Activity			5	2			-		2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, , Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Communication, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc.

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Proj <mark>ec</mark> ts)
Q	Seminar Courses

Table	1: Co	de for t	the courses
-------	-------	----------	-------------

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2. Table 2: Departments and their codes

SI.N o	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Saf <mark>ety & Fire Engg</mark>	FS

2014

SEMESTER I

SLO T	COURSE NO.	COURSES	L-T-P	HOUR S	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

SEMESTER II

SLO T	COURSE NO.	COURSES	L-T-P	HOUR S	CREDI T
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

Estd.

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

CIVIL ENGINEERING

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	CET201	MECHANICS OF SOLIDS	3-1-0	4	4
С	CET203	FLUID MECHANICS& HYDRAULICS	3-1-0	4	4
D	CET205	SURVEYING & GEOMATICS	4-0-0	4	4
E	EST200	DESIGN & ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	CEL201	CIVIL ENGINEERING PLANNING &DRAFTING LAB	0-0-3	3	2
Т	CEL203	SURVEY LAB	0-0-3	3	2
R/M	VAC	Remedial/Minor course	3-1-0	4 *	4
		TOTAL		26/30	22/26

NOTE:

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

2014

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	CET202	ENGINEERING GEOLOGY	3-0-1	4	4
С	CET204	GEOTECHNICAL ENGINEERING – I	4-0-0	4	4
D	CET206	TRANSPORTATION ENGINEERING	4-0-0	4	4
E	EST200	DESIGN & ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	CEL202	MATERIAL TESTING LAB- I	0-0-3	3	2
т	CEL204	FLUID MECHANICS LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
	-	TOTAL		26/30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

2014

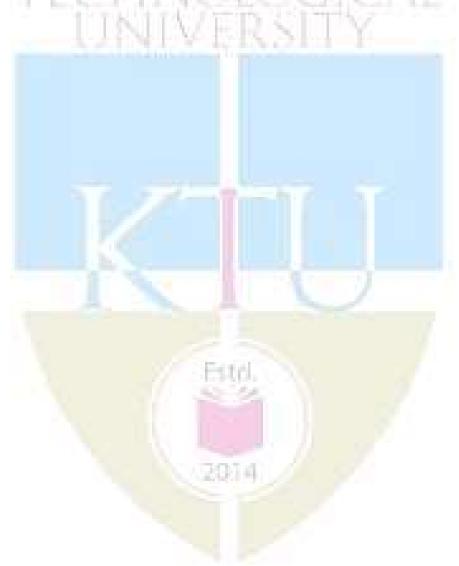
SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	CET301	STRUCTURAL ANALYSIS – I	3-1-0	4	4
В	CET303	DESIGN OF CONCRETE STRUCTURES	3-1-0	4	4
С	CET305	GEOTECHNICAL ENGINEERING – II	4-0-0	4	4
D	CET307	HYDROLOGY & WATER RESOURCES ENGINEERING	4-0-0	4	4
E	CET309	CONSTRUCTION TECHNOLOGY& MANAGEMENT	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	CEL331	MATERIAL TESTING LAB – II	0-0-3	3	2
Т	CEL333	GEOTECHNICAL ENGINEERING LAB 0-0		3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		27/31	23/27

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI


SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	CET302	STRUCTURAL ANALYSIS – II	3-1-0	4	4
В	CET304	ENVIRONMENTAL ENGINEERING	4-0-0	4	4
С	CET306	DESIGN OF HYDRAULIC STRUCTURES	4-0-0	4	4
D	CETXXX	PROGRAM ELECTIVE I	3-0-0	3	3
E	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
F	CET308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	CEL332	TRANSPORTATION ENGINEERING LAB	0-0-3	3	2
т	CEL334 CIVIL ENGINEERING SOFTWARE LAB		0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CET312	ADVANCED COMPUTATIONAL METHODS	3-0-0	1	
	CET322	GEOTECHNICAL INVESTIGATION	3-0-0	3	3
D	CET332	TRAFFIC ENGINEERING & MANAGEMENT	3-0-0		
	CET342	MECHANICS OF FLUID FLOW	3-0-0		
	CET352	ADVANCED CONCRETE TECHNOLOGY	3-0-0	_	
	CET362	ENVIRONMENTAL IMPACT ASSESSMENT	3-0-0		
	CET372	FUNCTIONAL DESIGN OF BUILDINGS	3-0-0	1	

NOTE:

- 1. **All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 2 to 4 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted online by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT	
Α	CET401	DESIGN OF STEEL STRUCTURES	3-0-0	3	3	
В	CETXXX	PROGRAM ELECTIVE II	3-0-0	3	3	
С	CETXXX	OPEN ELECTIVE	3-0-0	3	3	
D	MCN401	MCN401 INDUSTRIAL SAFETY ENGINEERING				
S	CEL411	ENVIRONMENTAL ENGG LAB	0-0-3	3	2	
Т	CEQ413	CEQ413 SEMINAR		3	2	
U	CED415	PROJECT PHASE I	0-0-6	6	2	
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4	
		TOTAL		24/28	15/19	

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CET413	PRESTRESSED CONCRETE	3-0-0		
	CET423	GROUND IMPROVEMENT	3-0-0		
	CET433	HIGHWAY MATERIALS AND DESIGN	3-0-0		
	CET443	APPLIED HYDROLOGY	3-0-0		
	CET453	CONSTRUCTION PLANNING & MANAGEMENT	3-0-0	3	3
	CET463	ADVANCED ENVIRONMENTAL ENGINEERING	3-0-0		
	CET473	OPTIMISATION TECHNIQUES IN CIVIL ENGINEERING	3-0-0]	

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by **the Department of CIVIL ENGINEERING for students of other undergraduate branches offered in the college.**

SLOT	COURSE	COURSES	L-T-P	HOUR	CREDIT
	NO.			S	
	CET415	ENVIRONMENTAL IMPACT	210		
		ASSESSMENT	2-1-0		
	CET425	APPLIED EARTH SYSTEMS	2-1-0		
С	CET435	INFORMATICS FOR INFRASTRUCTURE MANAGEMENT	2-1-0	3	3
	CET445	2-1-0	- 2g T		
	CET455			1.1.1	
		SAFETY	2-1-0		
	CET465	GEOINFORMATICS	2-1-0		

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of internal members comprising three senior faculty members based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20

Technical Content of the Report : 30 Presentation : 40

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Civil Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

SIG.

- Survey and study of published literature on the assigned topic;
- > Preparing an Action Plan for conducting the investigation, including team work;
- > Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- > Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30	
Interim evaluation by the evaluation committee		: 20
Final Seminar		: 30
The report evaluated by the evaluation committee		: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	CET402	QUANTITY SURVEYING & VALUATION	3-0-0	3	3
В	CETXXX	PROGRAM ELECTIVE III	3-0-0	3	3
С	СЕТХХХ	PROGRAM ELECTIVE IV	3-0-0	3	3
D	СЕТХХХ	PROGRAM ELECTIVE V	3-0-0	3	3
E	CET404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1
U	CED416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CET414	ADVANCED STRUCTURAL DESIGN	3-0-0		
	CET424	GEOENVIRONMENTAL ENGINEERING	3-0-0		
	CET434	RAILWAY AND TUNNEL ENGINEERING	3-0-0		
	CET444	IRRIGATION & DRAINAGE ENGINEERING	3-0-0	3	3
В	CET454	CONSTRUCTION METHODS & EQUIPMENT	3-0-0	5	
	CET464	AIRQUALITY MANAGEMENT	3-0-0		
	CET474	URBAN PLANNING & ARCHITECTURE	<u>3-0-0</u>		

PROGRAM ELECTIVE IV

0014

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CET416	BRIDGE ENGINEERING	3-0-0		
	CET426	ADVANCED FOUNDATION DESIGN	3-0-0		
	CET436	TRANSPORTATION PLANNING	3-0-0		
	CET446	INFORMATICS FOR INFRASTRUCTURE MANAGEMENT	3-0-0	3	3
C	CET456	REPAIR AND REHABILITATION OF BUILDINGS	3-0-0	5	5
	CET466	ENVIRONMENTAL REMOTESENSING	3-0-0		
	CET476	BULDING SERVICES	3-0-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CET418	EARTHQUAKERESISTANT DESIGN	3-0-0		
	CET428	SOIL STRUCTURE INTERACTION	3-0-0		
	CET438	AIRPORT, SEAPORT AND HARBOUR ENGINEERING	3-0-0		
_	CET448	HYDROCLIMATOLOGY	3-0-0	3	3
D	CET458	SUSTAINABLE CONSTRUCTION	3-0-0	1.1	
	CET468	CLIMATE CHANGE & SUSTAINABILITY	3-0-0	14	
	CET478	BUILDING INFORMATION MODELLING	3-0-0	S. Arr	
		INIVERSI	Y		

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the syllabus mentioned for comprehensive course work in the sixth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - > In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - > Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed;
 - > Final development of product/process, testing, results, conclusions and future directions;
 - > Preparing a paper for Conference presentation/Publication in Journals, if possible;
 - > Preparing a Dissertation in the standard format for being evaluated by the Department;

· 30

Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75 Guide

Guide	
Interim evaluation, 2 times in the semester by the evaluation committee	: 50
Quality of the report evaluated by the above committee	: 30
Final evaluation by a three member committee	: 40
(The final evaluation committee comprises Project coordinator, expert from	a Inductry

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute

and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot** courses.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in CIVIL ENGINEERING Branch can opt to study the courses listed below:

CIVIL ENGINEERING

S e	BASKET I			BASKET II				BASKET III				
m e st er	Course No.	Course Name	H O U R S	C R E D I T		Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	R E
S3	CET281	Building construction & structural systems	4	4	CET283	Introduction to Geotechnical Engineering	4	4	CET285	Informatics for Infrastructure Management	4	4
S4	CET282	Building drawing	4	4	CET284	Introduction to Transportation Engineering	4	4	CET286	Climate change & hazard mitigation	4	4
S5	CET381	Structural mechanics	4	4	CET383	Eco-friendly transportation systems	4	4	CET385	Sustainability analysis & design	4	4
S6	CET382	Estimation & costing	4	4	CET384	Geotechnical investigation & ground improvement techniques	4	4	CET386	Environmental health& safety	4	4
S7	CED481	MINI PROJECT	4	4	CED481	MINI PROJECT	4	4	CED481	MINI PROJECT	4	4
S8	CED482	MINI PROJECT	4	4	CED482	MINI PROJECT	4	4	CED482	MINI PROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

(i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.

- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in CIVIL ENGINEERING** can opt to study the courses listed below:

S e	GROUP					GROUP II				GROUP III			
m e st er	Course No.	Course Name	HOURS	C R H D - F	Course No.	Course Name	H O U R S	C R H D I I	Course No.	Course Name	H O U R S	C R E D I T	
S 4	CET292	ADVANCED MECHANICS OF SOLIDS	4	4	CET294	PAVEMENT CONSTRUCTION AND MANAGEMENT	4	4	CET296	GEOGRAPHICAL INFORMATION SYSTEMS	4	4	
S 5	CET393	STRUCTURAL DYNAMICS	4	4	CET395	TRANSPORTATION SYSTEMS MANAGEMENT	4	4	CET397	GROUND WATER HYDROLOGY	4	4	
S 6	CET394	FINITE ELEMENT METHODS	4	4	CET396	EARTH DAMS AND EARTH RETAINING STRUCTURES	4	4	CET398	ENVIRONMENTAL POLLUTION MODELLING	4	4	
S 7	CET495	MODERN CONSTRUCTION MATERIALS	4	4	CET497	SOIL DYNAMICS AND MACHINE FOUNDATIONS	4	4	CET499	ENVIRONMENTAL POLLUTION CONTROL TECHNIQUES	4	4	
S 8	CED496	MINI PROJECT	4	4	CED496	MINI PROJECT	4	4	CED496	MINI PROJECT	4	4	

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

Computer Science and Engineering

CURRICULUM FROM SEMESTERS I TO VIII

Every course of B. Tech. Programme shall be placed in one of the nine categories as listed in table below.

SI. No	A Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	5
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	79
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits		162
10	Value Added Course (Optional)	VAC	20

No semester shall have more than five lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	The second se	50			50				
Credits for Activity		2						2	
G.Total				1					162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering Science Courses: Engineering Graphics, Programming in C, Basics of Electrical and Electronics Engineering, Basics of Civil and Mechanical Engineering,

Engineering Mechanics, Thermodynamics, Design Engineering, Materials Engineering, Workshops etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory Non-credit Courses: Environmental Science, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, Disaster Management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **CSL 201**. The first two letter code refers to the department offering the course. CS stands for course in Computer Science & Engineering, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other than lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major-, Mini- Projects)
Q	Seminar courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (non-zero even number) or in both the semesters (zero). The middle number could be any digit. CSL 201 is a laboratory course offered in Computer Science and Engineering department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a theory course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments in the second semester. These course numbers are to be given in the curriculum and syllabi.

Departments

Sl. No.	Department	Course Prefix	Sl. No.	Department	Course Prefix
1	Aeronautical Engg	AO	16	Information Technology	IT
2	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
3	Automobile	AU	18	Mandatory Courses	MC
4	Biomedical Engg	BM	19	Mathematics	MA
5	Biotechnology	BT	20	Mechanical Engg	ME
6	Chemical Engg	СН	21	Mechatronics	MR
7	Chemistry	CY	22	Metallurgy	MT
8	Civil Engg	CE	23	Mechanical (Auto)	MU
9	Computer Science	CS	24	Mechanical (Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Ph <mark>ysic</mark> s	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
С	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
1/2	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D	EST 120	BASICS OF CIVIL & M E C H A N I C A L ENGINEERING	4-0-0	4	4
1/2	EST 130	BASICS OF ELECTRICAL & E L E C T R O N I C S ENGINEERING	4-0-0	4	4
Е	HUN 101	LIFE SKILLS	2-0-2	4	
S	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
1/2	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
1/2	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24	17

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTORCALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
С	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
1/2	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D	EST 120	BASICS OF CIVIL & M E C H A N I C A L ENGINEERING	4-0-0	4	4
1/2	EST 130	BASICS OF ELECTRICAL & E L E C T R O N I C S ENGINEERING	4-0-0	4	4
Е	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
1/2	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
1/2	ESL 130	E L E C T R I C A L & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in S1 and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester
- 2 Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in S1 and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METALLURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening

practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

MESTE	R III	ABDULK	AI	AN	1.
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 203	DISCRETE MATHEMATICAL STRUCTURES	3-1-0	4	4
В	CST 201	DATA STRUCTURES	3-1-0	4	4
С	CST 203	LOGIC SYSTEM DESIGN	3-1-0	4	4
D	CST 205	O B J E C T O R I E N T E D PROGRAMMING USING JAVA	3-1-0	4	4
Е	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MNC 201	S U S T A I N A B L E ENGINEERING	2-0-0	2	
S	CSL 201	DATA STRUCTURES LAB	0-0-3	3	2
Т	CSL 203	OBJECT ORIENTED PROGRAMMING LAB (IN JAVA)	0-0-3	3	2
R/M	VAC	Remedial/Minor course	3-1-0	4	4
		TOTAL		26*	22/26
* Exclu	ding Hours to	o be engaged for Remedial/Minor o	course.		

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT			
А	MAT 206	GRAPH THEORY	3-1-0	4	4			
В	CST 202	C O M P U T E R ORGANIS ATION AND ARCHITECTURE	3-1-0	4	4			
С	CST 204	DATABASE MANAGEMENT SYSTEMS	3-1-0	4	4			
D	CST 206	OPERATING SYSTEMS	3-1-0	4	4			
Е	EST 200	DESIGN & ENGINEERING	2-0-0	2	2			
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2			
F	MNC 202	CONSTITUTION OF INDIA	2-0-0	2				
S	CSL 202	DIGITAL LAB	0-0-3	3	2			
Т	CSL204	OPERATING SYSTEMS LAB	0-0-3	3	2			
R/M/ H	VAC	Remedial/Minor/Honors course	3-1-0	4	4			
	TOTAL 26* 22/26							
* Exclu	din <mark>g Hours t</mark>	o be engaged for Remedial/Minor/I	Honors co	ourse.				

NOTE:

 Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT			
А	CST 301	FORMAL LANGUAGES AND AUTOMATA THEORY	3-1-0	4	4			
В	CST 303	COMPUTER NETWORKS	3-1-0	4	4			
С	CST 305	SYSTEM SOFTWARE	3-1-0	4	4			
D	CST 307	MICROPROCESSORS AND MICROCONTROLLERS	3-1-0	4	4			
Е	CST 309	M A N A G E M E N T O F SOFTWARE SYSTEMS	3-0-0	3	3			
F	MNC 301	DISASTER MANAGEMENT	2-0-0	2				
S	CSL 331	SYSTEM SOFTWARE AND MICROPROCESSORS LAB	0-0-4	4	2			
Т	CSL 333	DATABASE MANAGEMENT SYSTEMS LAB	0-0-4	4	2			
R/M/ H	VAC	Remedial/Minor/Honors course*	2-0-0	4	4			
		TOTAL		29*	23/27			
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honors course.							

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/ Honors course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.

SLOT	COURS E NO.	COURSES	L-T-P	HOURS	CREDIT				
А	CST 302	COMPILER DESIGN	3-1-0	4	4				
В	CST 304	COMPUTER GRAPHICS AND IMAGE PROCESSING	3-1-0	4	4				
С	CST 306	ALGORITHM ANA LYSIS AND DESIGN	3-1-0	4	4				
D	CST	PROGRAM ELECTIVE I	2-1-0	3	3				
Е	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3				
F	CST 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1				
S	CSL 332	NETWORKING LAB	0-0-3	3	2				
Т	CSD 334	MINIPROJECT	0-0-3	3	2				
R/M/ H	VAC	Remedial/Minor/Honors course*	3-1-0	4	4				
		TOTAL	5	25*	2 <mark>3</mark> /27				
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honors course.								

Note:

Electives: This curriculum envisages to offer a learner an opportunity to earn proficiency in one of the five trending areas in Computer Science, namely Machine Learning, Data Science, Security in Computing, Formal Methods in Software Engineering and Hardware Technologies. Three courses each from the above areas are included through Elective Courses in different Elective Buckets. For example, a learner who is interested in the *Machine Learning* area may opt to take the elective courses - *Foundations of Machine Learning* from Elective-II in S6, *Machine Learning* from Elective-III in S7 and *Deep Learning* from Elective-III in S8. The Department may offer Elective Courses to enable students to utilize this opportunity, depending on the availability of faculty. The courses included from these areas under various Elective Buckets are shown in the table below.

Estol.

	Different Specializations introduced through various Elective Buckets							
Bucke	G • 11 /	Semester						
t	Specialisation	S6	S7	S8				
1	Machine Learning	FOUNDATIONS OF M A C H I N E LEARNING (E-I)	M A C H I N E LEARNING (E-II)	DEEP LEARNING (E-III)				
2	Data Science	DATA ANALYTICS (E-I)	C L O U D COMPUTING (E-II)	BLOCK CHAIN TECHNOLOGIES (E-V)				
3	Security in Computing	FOUNDATIONS OF SECURITY IN COMPUTING (E-I)	SHCTIPTIV IN	CRYPTOGRAPHY (E-III)				
4	Formal Methods in Software Engineering	A U T O M A T E D VERIFICATION (E- I)	MODEL BASED S O F T W A R E DEVELOPMENT (E-II)	S O F T W A R E TESTING (E-V)				
5	Hardware Technologies	INTRODUCTION TO IA32 ARCHITECTURE (E-I)	A D V A N C E D TOPICS IN IA32 ARCHITECTURE (E-II)	U N I F I E D E X T E N D E D F I R M W A R E INTERFACE (E-IV)				

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 312	i FOUNDATIONS OF MACHINE LEARNING	2-1-0	1	
	CST 322	ii DATA ANALYTICS	2-1-0	1	
	CST 332	iii FOUND ATIONS OF SECURITY IN COMPUTING	2-1-0	1	
	CST 342	i v A U T O M A T E D VERIFICATION	2-1-0	3	3
D	CST 352	v INTRODUCTION TO IA32 ARCHITECTURE	2-1-0		
	CST 362	vi PROGRAMMING IN PYTHON	2-1-0		
	CST 372	vii DATA AND COMPUTER COMMUNICATION	2-1-0		

COURSES TO BE CONSIDERED FOR COMPR	EHENSIVE COURSE WORK
I DISCRETE MATHEMATICAL STRUCTURES	
ii DATA STRUCTURES	
iii OPERATING SYSTEMS	CALA'M
iv COMPUTER ORGANIZATION AND ARCHIT	ECTURE
v DATABASE MANAGEMENT SYSTEMS	
vi FORMAL LANGUAGES AND AUTOMATA T	THEORY

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing the above listed 6 core courses studied from semesters 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum.
- 3. Mini project: It is introduced in the sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Student Groups with 3 or 4 members should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be

demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Mini Project coordinator for that program and project guide.

Total marks: 150 - CIE 75 marks and ESE 75 marks

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) 40

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	CST 401	ARTIFICIAL INTELLIGENCE	2-1-0	3	3
В	CST	PROGRAM ELECTIVE II	2-1-0	3	3
С	CST	OPEN ELECTIVE	2-1-0	3	3
D	MNC 401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	CSL 411	COMPILER LAB	0-0-3	3	2
Т	CSQ 413	SEMINAR	<mark>0-0-3</mark>	3	2
U	CSD 415	PROJECT PHASE I	<mark>0-0</mark> -6	6	2
R/M/ H	VAC	Remedial/Minor/Honors course*	3-1-0	4	4
	TOTAL			24*	15/19
* Exclud	* Excluding Hours to be engaged for Remedial/Minor/Honors course.				

SEMESTER VII

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 413	i MACHINE LEARNING	2-1-0		
	CST 423	ii CLOUD COMPUTING	2-1-0		
	CST 433	iii SECURITY IN COMPUTING	2-1-0	AN	11
В	CST 443	i v MODEL BASED SOFTWARE DEVELOPMENT	2-1-0	3	3
	CST 453	v ADVANCED TOPICS IN IA32 ARCHITECTURE	2-1-0		
	CST 463	vi WEB PROGRAMMING	2-1-0		
	CST 473	vii NATURAL LANGUAGE PROCESSING	2-1-0		

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of **COMPUTER SCIENCE & ENGINEERING** for students of other undergraduate branches except Computer Science & Engineering and Information Technology, offered in the colleges under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 415	i INTRODUCTION TO MOBILE COMPUTING	2-1-0	1	
	CST 425	ii INTRODUCTION TO DEEP LEARNING	2-1-0		
В	CST 435	iii COMPUTER GRAPHICS	2-1-0	3	3
	CST 445	iv PYTHON FOR ENGINEERS	2-1-0		
	CST 455	v OBJECT ORIENTED CONCEPTS	2-1-0		

NOTE:

- 1. All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information about their area of interest confined to the relevant discipline, from technical publications including peer reviewed journals, conferences, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50

Attendance	10
Seminar Guide	20
Technical Content of the Report	30
Presentation	40

- 3. Project Phase-I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The objective of Project Work Phase-I is to enable the student to take up investigative study in the broad field of Computer Science and Engineering, either fully theoretical/ practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the mentoring of a Project Guide(s). This is expected to provide a good initiation for the student(s) in R&D work. The assignment shall normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;
 - Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;

- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final project presentation before the concerned departmental committee.

Total marks: 100, only CIE, minimum required to pass 50

Project Guide(s)30Interim evaluation by the evaluation committee20Final project presentation30Final evaluation by the evaluation committee20The evaluation committee committee committee faculty member. Project

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project guide(s).

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	CST 402	DISTRIBUTED COMPUTING	2-1-0	3	3
В	CST	PROGRAM ELECTIVE III	2-1-0	3	3
С	CST	PROGRAM ELECTIVE IV	2-1-0	3	3
D	CST	PROGRAM ELECTIVE V	2-1-0	3	3
Т	CST 404	COMPREHENSIVE COURSE	1-0-0	1	1
U	CSD 416	PROJECT PHASE II	0-0-12	12	4
R/M/ H	VAC	Remedial/Minor/Honors course	3-1-0	4	4
		TOTAL		25*	17/21
* Excluding Hours to be engaged for Remedial/Minor/Honors course.					

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 414	i DEEP LEARNING	2-1-0		
	CST 424	i i P R O G R A M M I N G PARADIGMS	2-1-0		3
	CST 434	iii CRYPTOGRAPHY	2-1-0		
В	CST 444	iv SOFT COMPUTING	2-1-0		
	CST 454	v FUZZY SET THEORY AND APPLICATIONS	2-1-0	-	
	CST 464	vi EMBEDDED SY <mark>ST</mark> EMS	2-1-0		
	CST 474	vii COMPUTER VISION	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 416	i FORMAL METH <mark>O</mark> DS AND TO O L S I N S O F T WA R E ENGINEERING	2-1-0		
	CST 426	i i CLIENT SERVER ARCHITECTURE	2-1-0	1	
С	CST 436	iii PARALLEL COMPUTING	2-1-0	1	
	CST 44 <mark>6</mark>	iv DATA COMPRESSION TECHNIQUES	2-1-0	3	3
	CST 456	v UNIFIED EXTENDED FIRMWARE INTERFACE	2-1-0		
	CST 466	vi DATA MINING	2-1-0		
	CST 476	vii MOBILE COMPUTING	2-1-0		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 418	i HIGH PERFORMANCE COMPUTING	2-1-0		
	CST 428	ii BLOCK CHAIN TECHNOLOGIES	2-1-0	AW	11
D	CST 438	iii IMAGE PROCESSING TECHNIQUE	2-1-0	4	3
	CST 448	iv INTERNET OF THINGS	2-1-0	5	
	CST 458	v SOFTWARE TESTING	2-1-0		
	CST 468	vi BIOINFORMA <mark>TIC</mark> S	2-1-0		
	CST 478	vii COMPUTATIONAL LINGUISTICS	2-1-0		

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Viva Voce: The comprehensive viva voce in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semesters. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The objective of Project Work Phase II & Dissertation is to enable the student to extend further the investigative study taken up in Project Phase I, either fully theoretical/practical or involving both theoretical and practical work, under the mentoring of a Project Guide from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment shall normally include:

- In depth study of the topic assigned in the light of the Report prepared in Phase I;
- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modeling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before the concerned evaluation committee

Total marks: 150, only CIE, minimum required to pass 75

Project Guide	30
Interim evaluation, twice in the semester by the evaluation committee	70
Quality of the report evaluated by the above committee	10

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project guide).

Final evaluation by a three member committee

40

(The final evaluation committee comprises Project coordinator, expert from Industry/ research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if she/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist bucket of 3-6 courses is identified for each Minor. Each bucket may rest on one or more

foundation courses. A bucket may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. She/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by M slot courses.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required to award B.tech with Minor is 182 (162 + 20)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of Studies and approved by the Academic Council or 2 courses from the minor buckets listed here. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

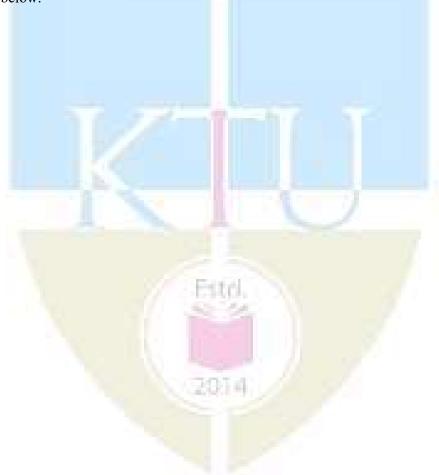
(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded if the registrant earn 20 credits form the minor courses.

(vi) The registration for minor program will commence from semester 3 and all the academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets. The bucket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. Reshuffling of courses between various buckets will not be allowed. There is option to skip any two courses listed here and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S7 or S8. For example: Students who have registered for B.Tech Minor in Computer Science & Engineering can opt to study the courses listed below:

					MIN	OR BUCKETS						
S E M E S T E R	BUCKET-1 Specialization - Software Engineering					BUCKET-2	BUCKET-3 Specialization - Networking					
					Spo	ecialization - Mach Learning						
	CO UR SE NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE	H O U R S	C R E D I T
S3	CST 281	OBJECT ORIENTED PROGRAMMING	4	4	CST 283	PYTHON FOR MACHINE LEARNING	4	4	CST 285	DATA COMMUNICAT ION	4	4
S4	CST 282	PROGRAMMING METHODOLOGIE S	4	4	CST 284	MATHEMATIC S FOR MACHINE LEARNING	4	4	CST 286	INTRODUCTIO N TO COMPUTER NETWORKS	4	4
S5	CST 381	CONCEPTS IN SOFTWARE ENGINEERING	4	4	CST 383	CONCEPTS IN MACHINE LEARNING	4	4	CST 385	CLIENT SERVER SYSTEMS	4	4
S6	CST 382	INTRODUCTION TO SOFTWARE TESTING	4	4	CST 384	CONCEPTS IN DEEP LEARNING	4	4	CST 386	WIRELESS NETWORKS AND IOT APPLICATION S	4	4
S7	CSD 481	Miniproject	4	4	CSD 481	Miniproject	4	4	CSD 481	Miniproject	4	4
S8	CSD 482	Miniproject	4	4	CSD 482	Miniproject	4	4	CSD 482	Miniproject	4	4
Note-1: Name of the specialization shall be mentioned in the Minor Degree to be awarded												
Note-2: Any B.Tech students from non-Computer Science/non-IT streams can register for the courses in the minor buckets.												

HONORS


Honors is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honors is not indicative of a class. The University is providing this option for academically extra brilliant students to acquire Honors. Honors is intended for a student to *gain expertise*/get *specialized* in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the concerned branch of engineering. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honors, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honors." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If a student is not earning credits for any one of the specified course for getting Honors, she/he is not entitled to get Honors. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honors courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The Honors courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honors at the beginning of fourth semester. Total credits required is 182 (162 + 20).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or 2 courses from the same bucket as the above 3 courses. The classes for Honors shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under Honors.
- (iv) There won't be any supplementary examination for the courses chosen for Honors.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honors" will be awarded if overall CGPA is greater than

or equal to 8.5, earned a grade of 'C' or better for all courses chosen for Honors and there is no history of 'F' Grade in the entire span of the BTech Course.

(vi) The registration for Honors program will commence from semester 4 and the all academic units offering Honors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. There is option to skip any two courses listed here if required, and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for **B.Tech in Computer Science and Engineering with Honors** can opt to study the courses listed in one of the buckets shown below:

HONORS BUCKETS												
S E M E S T E R	BUCKET-1 Specialization - Security in Computing					BUCKET-2	BUCKET-3 Specialization - Formal Methods					
					Spo	ecialization - Mach Learning						
	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO UR SE NO	COURSE NAME	H O U R S	C R E D I T
S4	CST 292	NUMBER THEORY	4	4	CST 294	COMPUTATIO NAL FUNDAMENT ALS FOR MACHINE LEARNING	4	4	CST 296	PRINCIPLES OF PROGRAM ANALYSIS AND VERIFICATION	4	4
S5	CST 393	CRYPTOGRAPHI C ALGORITHMS	4	4	CST 395	NEURAL NETWORKS AND DEEP LEARNING	4	4	CST 397	PRINCIPLES OF MODEL CHECKING	4	4
S6	CST 394	NETWORK SECURITY	4	4	CST 396	ADVANCED TOPICS IN MACHINE LEARNING	4	4	CST 398	THEORY OF COMPUTABILI TY AND COMPLEXITY	4	4
S7	CST 495	CYBER FORENSICS	4	4	CST 497	ADVANCED TOPICS IN ARTIFICIAL INTELLIGENC E	4	4	CST 499	LOGIC FOR COMPUTER SCIENCE	4	4
S8	CSD 496	Miniproject	4	4	CSD 496	Miniproject	4	4	CSD 496	Miniproject	4	4
Note: Name of the specialization shall be mentioned in the Honors Degree to be awarded												

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed specifically for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social works and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. Tech. ELECTRONICS & BIOMEDICAL ENGINEERING

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

Estel.

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50 50 -							
Credits Activity	for				2					2
G. Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description						
Т	Theory based courses (other the lecture hours, these courses can have tutorial						
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)						
L	Laboratory based courses (where performance is evaluated primarily on the basis						
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)						
N	Non-credit courses						
D	Project based courses (Major, Mini Projects)						
Q	Seminar Courses						

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical (Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA & CALCULUS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

10

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS & TRANSFORMS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL	5	28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION & COMPLEX ANALYSIS	3-1-0	4	4
В	EBT201	ANATOMY & PHYSIOLOGY FOR BIOMEDICAL ENGINEERS	4-0-0	4	4
С	EBT203	ELECTRONIC DEVICES & CIRCUITS	3-1-0	4	4
D	EBT205	LOGIC CIRCUITS & DESIGN	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	EBL201	ELECTRONIC DEVICES & CIRCUITS LAB	0-0-3	3	2
Т	EBL203	LOGIC CIRCUITS LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	2	26/30	22/26

NOTE:

Estd.

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT204	PROBABILITY, RANDOM PROCESSES & NUMERICAL METHODS	3-1-0	4	4
	557202				
В	EBT202	BIOMEDICAL SIGNALS & TRANSDUCERS	4-0-0	4	4
С	EBT204	LINEAR INTEGRATED CIRCUITS	3-1-0	4	4
D	EBT206	MICROCONTROLLERS & APPLICATIONS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	EBL202	LINEAR INTEGRATED CIRCUITS LAB	0-0-3	3	2
Т	EBL204	MICROCONTROLLERS & APPLICATIONS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	26/30	22/26

NOTE:

Estd.

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	EBT301	ANALYTICAL & DIAGNOSTIC EQUIPMENTS	4-0-0	4	4
В	EBT303	HOSPITAL ENGINEERING	3-1-0	4	4
С	EBT305	MEDICAL IMAGING TECHNIQUES	4-0-0	4	4
D	EBT307	INTRODUCTION TO BIOMEDICAL SIGNAL PROCESSING	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	EBL331	MEDICAL ELECTRONICS LAB	0-0-3	3	2
Т	EBL333	BIOMEDICAL SIGNAL PROCESSING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	2	27/31	23/27

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

2014

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	EBT302	MEDICAL IMAGE PROCESSING	3-1-0	4	4
В	EBT304	THERAPEUTIC EQUIPMENTS	4-0-0	4	4
С	EBT306	ARTIFICIAL NEURAL NETWORKS & APPLICATIONS	3-1-0	4	4
D	EBTXXX	PROGRAM ELECTIVE I	3-0-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	EBT308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	EBL332	BIOENGINEERING LAB	0-0-3	3	2
Т	EBD334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	2	25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EBT312	ELECTRICAL NETWORKS & ANALYSIS	2-1-0		
	EBT322	MEDICAL INFORMATICS	3-0-0	3	3
D	EBT332	ADVANCED MICROPROCESSORS &	3-0-0		
		MICROCONTROLLERS			
	EBT342	DESIGN OF BIOMEDICAL DEVICES	3-0-0		
	EBT352	BIOSTATISTICS	2-1-0		
	EBT362	BIOMEDICAL SIGNAL PROCESSING &	3-0-0		
		APPLICATIONS			
	EBT372	COMMUNICATION TECHNIQUES	3-0-0		

10.00

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee

appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks Split up for CIE

Attendance

Guide: 15Project Report: 10Evaluation by the Committee (will be evaluating the level of completion and
demonstration of functionality/specifications, presentation, oral examination, work
knowledge and involvement): 40

:10

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	EBT401	CONTROL SYSTEMS ENGINEERING	2-1-0	3	3
В	EBTXXX	PROGRAM ELECTIVE II	3-0-0	3	3
С	EBTXXX	OPEN ELECTIVE	3-0-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	EBL411	MEDICAL SYSTEMS LAB	0-0-3	3	2
Т	EBQ413	SEMINAR	0-0-3	3	2
U	EBD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EBT413	ELECTRICAL TECHNOLOGY FOR BIOMEDICAL ENGINEERS	2-1-0		
	EBT423	DESIGN OF LOGIC SYSTEMS	2-1-0	3	3
В	EBT <mark>433</mark>	TELEMEDICINE	3-0-0		
	EBT443	BIOMATERIALS & APPLICATIONS	3-0-0	7.	
	EBT453	BIO FLUID MECHANICS	3-0-0		
	EBT463	COMPUTATIONAL METHODS IN BIOMEDICAL ENGINEERING	2-1-0		
	EBT473	BIOMEDICAL OPTICS & BIOPHOTONICS	3-0-0]	

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses

listed below are offered by the Department of ELECTRONICS & BIOMEDICAL for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EBT415	BIOMEDICAL INSTRUMENTATION	3-0-0	a star	
C	EBT425	MEDICAL IMAGING & IMAGE PROCESSING	2-1-0	3	3
C	EBT435	BIOSIGNALS & SIGNAL PROCESSING	2-1-0		
	EBT445	BIOMATERIALS & BIOMECHANICS	3-0-0		

NOTE:

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.

TOWARD PRODUCT AND ADDRESS OF ADDRESS ADDRE

2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Biomedical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

- Survey and study of published literature on the assigned topic;
- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation

- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;

> Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50	
Guide	:30
Interim evaluation by the evaluation committee	:20
Final Seminar	:30
The report evaluated by the evaluation committee	:20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	EBT402	BIOMECHANICS & DESIGN OF PROSTHETIC DEVICES	3-0-0	3	3
В	EBTXXX	PROGRAM ELECTIVE III	3-0-0	3	3
С	EBTXXX	PROGRAM ELECTIVE IV	3-0-0	3	3
D	EBTXXX	PROGRAM ELECTIVE V	3-0-0	3	3
Т	EBT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	EBD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EBT414	POWER ELECTRONICS &	3-0-0		
		APPLICATIONS			
	EB <mark>T424</mark>	ARTIFICIAL ORGANS & IMPLANTS	3-0-0	3	3
В	EBT <mark>434</mark>	ADVANCED COMPUTER	3-0-0		
		PROGRAMMING TECHNIQUES			
	EBT444	MEDICAL ROBOTICS	3-0-0		
	EBT454	FUNDAMENTALS OF BIOMEMS &	3-0-0		
		MICROFLUIDICS			
	EBT464	PRINCIPLES OF RADIO DIAGNOSIS &	3-0-0]	
		RADIOTHERAPY			
	EBT474	ADVANCED MEDICAL IMAGING &	3-0-0	1	
		IMAGE PROCESSING TECHNIQUES			

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EBT416	VLSI DESIGN	3-0-0		
	EBT426	ADVANCED BIOMEDICAL SIGNAL	3-0-0		

ELECTRONICS & BIOMEDICAL ENGINEERING

		PROCESSING		3	3
C	EBT436	IOT & BIOMEDICAL APPLICATIONS	3-0-0		
	EBT446	BIOMEDICAL TRANSPORT	3-0-0		
		PHENOMENA			
	EBT456	PATTERN RECOGNITION	3-0-0		
	BMT466	MECHATRONICS	3-0-0		
	EBT476	DEEP LEARNING TECHNIQUES	3-0-0		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EBT418	EMBEDDED SYSTEM DESIGN	3-0-0	1.1	
	EBT428	ASSISTIVE MEDICAL DEVICES	3-0-0		
	EBT438	REHABILITATION ENGINEERING	3-0-0	3	3
D	EBT448	INTRODUCTION TO	3-0-0		
		BIONANOTECHNOLOGY			
	EBT458	RELIABILITY ENGINEERING	3-0-0		
	EBT468	MODELLING OF PHYSIOLOGICAL	3-0-0		
		SYSTEMS			
	EBT478	HUMAN FACTORS IN ENGINEERING	3-0-0		
		AND DESIGN			

NOTE

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for

the student(s) in R&D work and technical leadership. The assignment to normally include:

- In depth study of the topic assigned in the light of the Report prepared under Phasel;
- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three member committee: 40(The final evaluation committee comprises Project coordinator, expert fromIndustry/research Institute and a senior faculty from a sister department. The samecommittee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more

ELECTRONICS & BIOMEDICAL ENGINEERING

foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in ELECTRONICS & BIOMEDICAL ENGINEERING can opt to study the courses listed below:

S e		t I (Biomedical Sigr mage Processing)	nal &			sket II (Biomedical Instrumentation)			Bask Biom	et III (Computing redical Engineerir	in ng)	
m e st er	Course No.	Course Name	C r e d i	H o u r s	Course No.	Course Name	C r e d i	H o u r s		Course Name	C r e d i	H o u r s
			t				t				t	
S3	EBT281	BIOMEDICAL SYSTEMS & SIGNALS	4	4	EBT283	BASIC ANATOMY & PHYSIOLOGY FOR ENGINEERS	4	4	EBT285	BASIC MEDICAL SCIENCES FOR ENGINEERS	4	4
S4	EBT282	PHYSICS OF BIOMEDICAL IMAGING	4	4	EBT284	BIOSIGNAL ACQUISITION SYSTEMS	4	4	EBT286	NUMERICAL TECHNIQUES IN BIOMEDICAL ENGINEERING	4	4
S5	EBT381	BIOMEDICAL SIGNAL PROCESSING	4	4	EBT383	PRINCIPLES OF BIOMEDICAL IMAGING	4	4	EBT385	ARTIFICIAL INTELLIGENCE & MACHINE LEARNING TECHNIQUES	4	4
S6	EBT382	BIOMEDICAL IMAGE PROCESSING	4	4	EBT384	THERAPEUTIC DEVICES	4	4	EBT386	PHYSIOLOGICAL SYSTEM MODELLING	4	4
S7	EBD481	MINIPROJECT	4	4	EBD481	MINIPROJECT	4	4	EBD481	MINIPROJECT	4	4
S8	EBD482	MINIPROJECT	4	4	EBD482	MINIPROJECT	4	4	EBD482	MINIPROJECT	4	4

ELECTRONICS & BIOMEDICAL ENGINEERING

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same

group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through course listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in ELECTRONICS & BIOMEDICAL Branch** can opt to study the courses listed below:

S		Group I				Group II				Group III		
e m es te r	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R D I T	Course No	Course Name	H O U R S	R E
S4	EBT292	BIOMEDICAL	4	4	EBT294	SOLID STATE	4	4	EBT296	CELLULAR	4	4
		SIGNALS &				ELECTRONIC				PHYSIOLOGY &		

ELECTRONICS & BIOMEDICAL ENGINEERING

		SYSTEMS				DEVICES				BIOPOTENTIALS		
S5	EBT393	SPEECH & AUDIO SIGNAL PROCESSING	4	4	EBT395	ANALOG INTEGRATED CIRCUIT DESIGN	4	4	EBT397	MATHEMATICAL METHODS IN BIOMEDICAL ENGINEERING	4	4
S6	EBT394	ADAPTIVE SIGNAL PROCESSING	4	4	EBT396	DIGITAL INTEGRATED CIRCUITS	4	4	EBT398	STATISTICAL METHODS IN BIOMEDICAL ENGINEERING	4	4
S7	EBT495	IMAGE & VIDEO PROCESSING	4	4	EBT497	CMOS DIGITAL DESIGN	4	4	EBT499	COMPUTATIONAL PHYSIOLOGY	4	4
S8	EBD496	MINI PROJECT	4	4	EBD496	MINI PROJECT	4	4	EBD496	MINI PROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech ELECTRONICS & COMMUNICATION ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	52
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity		50		-	2		50		
Points									
Credits for				2					2
Activity									
Grand.Total									162

Semester-wise credit distribution shall be as below:

ELECTRONICS & COMMUNICATION ENGINEERING

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like E C L 2 0 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description					
Т	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)					
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)					
N	Non-credit courses					
D	Project based courses (Major, Mini Projects)					
Q	Seminar Courses					

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2. Table 2: Departments and their codes

		Departii	ients ai	nd their codes	
Sl.No	Department	Course Prefix	Sl.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT (A)
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0		4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
_, _	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
,	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

1.1

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
		EQUATIONS AND TRANSFORMS			
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
·	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
,	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for

Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

Semester III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	ECT 201	SOLID STATE DEVICES	3-1-0	4	4
С	ECT 203	LOGIC CIRCUIT DESIGN	3-1-0	4	4
D	ECT 205	NETWORK THEORY	3-1-0	4	4
E 1/2	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	ECL 201	SCIENTIFIC COMPUTING LAB	0-0-3	3	2
Т	ECL 203	LOGIC DESIGN LAB	0-0-3	3	2
R/M	VAC	Remedial/Minor course	3-1-0	4**	4
L		ΤΟΤΑΙ	- 14	<mark>26/</mark> 30	22/26

NOTE:

 Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

Semester IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 204	PROBABILITY, RANDOM PROCESS AND NUMERICAL METHODS	3-1-0	4	4
В	ECT 202	ANALOG CIRCUITS	3-1-0	4	4
С	ECT 204	SIGNALS AND SYSTEMS	3-1-0	4	4
D	ECT 206	COMPUTER ARCHITECTURE AND MICROCONTROLLERS	3-1-0	4	4
E 1/2	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	ECL 202	ANALOG CIRCUITS AND SIMULATION LAB	0-0-3	3	2
Т	ECL 204	MICROCONTROLLER LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		26/30	22/26

NOTE:

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

Semester V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 301	LINEAR INTEGRATED CIRCUITS	3-1-0	4	4
В	ECT 303	DIGITAL SIGNAL PROCESSING	3-1-0	4	4
С	ECT 305	ANALOG AND DIGITAL COMMUNICATION	3-1-0	4	4 41
D	ECT 307	CONTROL SYSTEMS	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	ECL 331	ANALOG INTEGRATED CIRCUITS AND SIMULATION LAB	0-0-3	3	2
Т	ECL 333	DIGITAL SIGNAL PROCESSING LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours	3-1-0	4**	4
		TOTAL	1	27/31	23/27

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

Semester VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 302	ELECTROMAGNETICS	3-1-0	4	4
В	ECT 304	VLSI CIRCUIT DESIGN	3-1-0	4	4
С	ECT 306	INFORMATION THEORY AND CODING	3-1-0	4	4
D	ECTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1⁄2	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	ECT 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	ECL 332	COMMUNICATION LAB	0-0-3	3	2
Т	ECD 334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
	-	TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 312	Digital System Design	2-1-0		
	ECT 322	Power Electronics	2-1-0	3	3
D	ECT 332	Data Analysis	2-1-0	3	3
D	ECT 342	Embedded Systems	2-1-0		
	ECT 352	Digital Image Processing	2-1-0		
	ECT 362	Introduction to MEMS	2-1-0		
	ECT 372	Quantum Computing	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks Split up for CIE Attendance Guide :15 **Project Report** :10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement)

10

:40

Semester VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 401 WIRELESS COMMUNICATION		2-1-0	3	3
В	ECTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	ECTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	ECL 411	ELECTROMAGNETICS LAB	0-0-3	3	2
Т	ECQ 413	SEMINAR	0-0-3	3	2
U	ECD 415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	Remedial/Minor/Honors course	3-1-0	4*	4
I		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
	ECT 413	Optical Fiber Communication	2-1-0		
	ECT 423	Computer Networks	2-1-0		ļ
	ECT 433	Opto-electronic Devices	2-1-0	3	3
В	ECT 443	Antenna and Wave propagration	2-1-0		
	ECT 453	Error Control Codes	2-1-0	_	
	ECT 463	Machine Learning	2-1-0		
	ECT 473	DSP Architectures	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of ELECTRONICS AND COMMUNICATION ENGINEERING for students of other undergraduate branches offered in the college under KTU.

2014

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
	ECT 415	Mechatronics	2-1-0		
	ECT 425	Biomedical Instrumentation	2-1-0	3	3
	ECT 435	Electronic Hardware for Engineers	2-1-0		
С	ECT 445	IoT and Applications	2-1-0	Sec. 14	
	ECT 455	Entertainment Electronics	2-1-0		
		L'ELN INTON	111	- Ar 1	
	14.1		314 A	- M.I.	

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics and Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - > Preparing an Action Plan for conducting the investigation, including team work;
 - > Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;

- Preparing a Written Report on the Study conducted for presentation to the Department;
- Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50Guide: 30Interim evaluation by the evaluation committee: 20Final Seminar: 30The report evaluated by the evaluation committee: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

Semester VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	ECT 402	INSTRUMENTATION	2-1-0	3	3
В	ECTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	ECTXXX	ECTXXX PROGRAM ELECTIVE IV		3	3
D	ECTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
E	ECT 404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1
U	ECD 416	PROJECT PHASE II	0-0- 12	12	4
R/M/H	VAC	Remedial/Minor/Honors course	3-1-0	4*	4
		TOTAL		25/28	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	. COURSES L-T-		HOURS	CREDIT
5201	COORSE NO.	COUNSES	6-1-1	noons	CREDIT
	ECT 414	Biomedical Engineering	2-1-0		
	ECT 424	Satellite Communication	2-1-0		
	ECT 434	Secure Communication	2-1-0		
	ECT 444	Pattern Recognition	2-1-0	3	3
В	ECT 454	RF Circuit Design	2-1-0		
	ECT 464	Mixed Signal Circuit Design	2-1-0		
	ECT 474	Entrepreneurship	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 416	Modern Communication Systems	<mark>2</mark> -1-0		
	ECT 426	Real Time Operating Systems	2-1-0		
	ECT 436	Adaptive Signal Processing	2-1-0	3	3
	ECT 446	Microwave Devices and Circuits	2-1-0		
C	ECT 456	Speech and Audio Processing	2-1-0		
	ECT 466	Analog CMOS Design	2-1-0		
	ECT 476	Robotics	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 418	Mechatronics	2-1-0		
	ECT 428	Optimization Techniques	2-1-0		
	ECT 438	Computer Vision	2-1-0		
D	ECT 448	Low Power VLSI	2-1-0	3	3
	ECT 458	Internet of Things	2-1-0		
	ECT 468	Renewable Energy Systems	2-1-0	- Ac 1	
	ECT 478	Organic Electronics	2-1-0		

PROGRAM ELECTIVE V

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. Project Phase II: The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;
 - > Preparing a paper for Conference presentation/Publication in Journals, if possible;
 - Preparing a Dissertation in the standard format for being evaluated by the Department;
 - > Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project
coordinator and project supervisor).: 40Final evaluation by a three member committee: 40(The final evaluation committee and a senior faculty from a sister department. The same
committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv)There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

ELECTRONICS & COMMUNICATION ENGINEERING

(vi)The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in **ELECTRONICS AND COMMUNICATION** can opt to study the courses listed below:

SE		BASKET I					BASKET II				BASKET III		
ME STE R	COURS E NO.	COURSE NAME	H O U R S	C R E D I T	H U R S	COURS E NO.	COURSE NAME	H O U R S	C R E D I T	COURS E NO.	COURSE NAME	H O U R S	
S3	ECT281	ELECTRONIC CIRCUITS	4	4		ECT283	ANALOG COMMUNICATI ON	4	4	ECT285	INTRODUCTION TO SIGNALS AND SYSTEMS	4	4
S4	ECT282	MICROCONT ROLLERS	4	4		ECT284	DIGITAL COMMUNICATI ON	4	4	ECT286	INTRODUCTION TO DIGITAL SIGNAL PROCESSING	4	4
S5	ECT381	EMBEDDED SYSTEM DESIGN	4	4		ECT383	COMMUNICATI ON SYSTEMS	4	4	ECT385	TOPICS IN DIGITAL IMAGE PROCESSING	4	4
S6	ECT382	VLSI CIRCUITS	4	4		ECT384	DATA NETWORKS	4	4	ECT386	TOPICS IN COMPUTER VISION	4	4
S7	ECD481	MINIPROJECT	4	4		ECD481	MINIPROJECT	4	4	ECD481	MINIPROJECT	4	4
S8	ECD482	MINIPROJECT	4	4		ECD482	MINIPROJECT	4	4	ECD482	MINIPROJECT	4	4

HONOURS

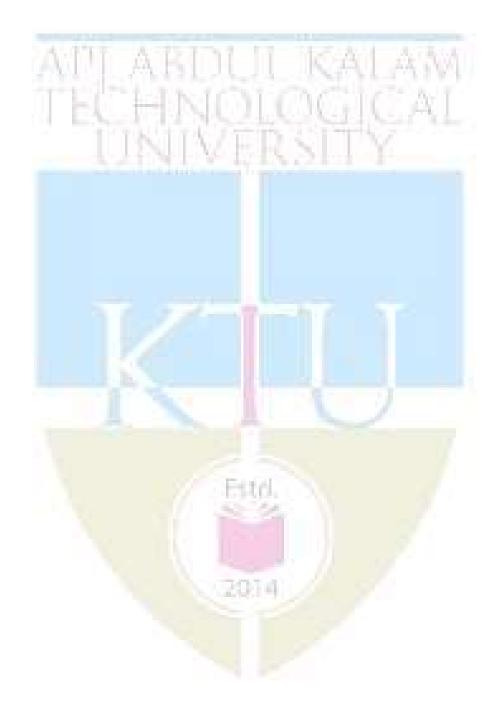
Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for Honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B.Tech Honours in ELECTRONICS AND COMMUNICATION ENGINEERING can opt to study the courses listed below:

ELECTRONICS & COMMUNICATION ENGINEERING

		GROUP I				GROUP II				GROUP III		
SE ME STE R	COURS E NO.	COURSE NAME	H O U R S	C R E D I T	COURSE NO.	COURSE NAME	H O U R S	C R E D I T	COURSE NO.	COURSE	H O U R S	C R E D I T
S4	ECT292	NANOELECTRO NICS	4	4	ECT294	STOCHASTIC PROCESSES FOR COMMUNICATION	4	4	ECT296	STOCHASTIC SIGNAL PROCESSING	4	4
S5	ECT393	FPGA BASED SYSTEM DESIGN	4	4	ECT395	DETECTION AND ESTIMATION THEORY	4	4	ECT397	COMPUTATI ONAL TOOLS FOR SIGNAL PROCESSING	4	4
S6	ECT394	ELECTRONIC DESIGN AND AUTOMATION TOOLS	4	4	ECT396	MIMO AND MULTIUSER COMMUNICATION SYSTEMS	4	4	ECT398	DETECTION AND ESTIMATION THEORY	4	4
S7	ECT495	RF MEMS	4	4	ECT497	DESIGN AND ANALYSIS OF ANTENNAS	4	4	ECT499	MULTIRATE SIGNAL PROCESSING AND WAVELETS	4	4
S8	ECD496	MINIPROJECT	4	4	ECD496	MINIPROJECT	4	4	ECD496	MINIPROJECT	4	4


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

• **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: ELECTRICAL & ELECTRONICS ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50 50							
Credits Activity	for				2					2
G.Total										162

ELECTRICAL & ELECTRONICS ENGINEERING

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table	1:	Code	for t	the	courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	Sl.No	Department	Course Prefix
	ASPER	1752	1.7	defendent of the state	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICSA	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

std

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	EET201	CIRCUITS AND NETWORKS	2-2-0	4	4
С	EET203	MEASUREMENTS AND INSTRUMENTATION	3-1-0	4	4
D	EET205	ANALOG ELECTRONICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	EEL201	CIRCUITS AND MEASUREMENTS LAB	0-0-3	3	2
Т	EEL203	ANALOG ELECTRONICS LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	1	26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

10.00

2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT 204	PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS	3-1-0	4	4
В	EET202	DC MACHINES AND TRANSFORMERS	2-2-0	4	4
С	EET204	ELECTROMAGNETIC THEORY	3-1-0	4	4
D	EET206	DIGITAL ELECTRONICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	EEL202	ELECTRICAL MACHINES LAB I	0-0-3	3	2
Т	EEL204	DIGITAL ELECTRONICS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

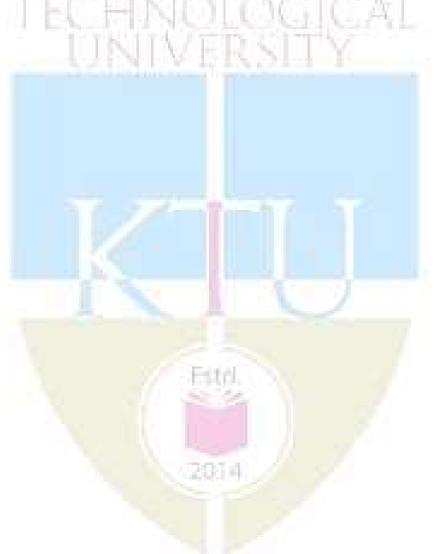
SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	EET301	POWER SYSTEMS I	3-1-0	4	4
В	EET303	MICROPROCESSORS AND MICROCONTROLLERS	3-1-0	4	4
С	EET305	SIGNALS AND SYSTEMS	3-1-0	4	4
D	EET307	SYNCHRONOUS AND INDUCTION MACHINES	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	EEL331	MICROPROCESSORS AND MICROCONTROLLERS LAB	0-0-3	3	2
Т	EEL333	ELECTRICAL MACHINES LAB II	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	line,	TOTAL	<u>}</u>	27/31	23/27

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	EET302	LINEAR CONTROL SYSTEMS	2-2-0	4	4
В	EET304	POWER SYSTEMS II	3-1-0	4	4
С	EET306	POWER ELECTRONICS	3-1-0	4	4
D	EETXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	EET308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	EEL332	POWER SYSTEMS LAB	0-0-3	3	2
Т	EEL334	POWER ELECTRONICS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	<u> </u>	28/32	23/27


PROGRAM ELECTIVE I

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET312	BIOMEDICAL INSTRUMENTATION	2-1-0		
	EET322	RENEWABLE ENERGY SYSTEMS	2-1-0		
D	EET332	COMPUTER ORGANIZATION	2-1-0	3	3
	EET342	HIGH VOLTAGE ENGINEERING	2-1-0		
	EET352	OBJECT ORIENTED PROGRAMMING	2-1-0		
	EET362	MATERIAL SCIENCE	2-1-0		
	EET372	SOFT COMPUTING	2-1-0		

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET401	ADVANCED CONTROL SYSTEMS	2-1-0	3	3
В	EETXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	EETXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	EEL411	CONTROL SYSTEMS LAB	0-0-3	3	2
Т	EEQ413	SEMINAR	0-0-3	3	2
U	EED415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	5	TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET413	ELECTRIC DRIVES	2-1-0		
	EET423	DIGITAL CONTROL SYSTEMS	2-1-0		
В	EET433	MODERN OPERATING SYSTEMS	2-1-0	3	3
	EET443	DATA STRUCTURES	2-1-0		
	EET453	DIGITAL SIGNAL PROCESSING	2-1-0		
	EET463	ILLUMINATION TECHNOLOGY	2-1-0		
	EET473	DIGITAL PROTECTION OF POWER	2-1-0		
		SYSTEMS			

OPEN ELECTIVES

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example the courses listed below are offered by the Department of ELECTRICAL & ELECTRONICS ENGINEERING for students of other undergraduate branches offered in the college under KTU.

2014

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EET415	CONTROL SYSTEMS ENGINEERING	2-1-0		
	EET425	INTRODUCTION TO POWER	2-1-0		
С		PROCESSING		3	3
	EET435	RENEWABLE ENERGY SYSTEMS	2-1-0		
	EET445	ELECTRIC VEHICLES	2-1-0		
	EET455	ENERGY MANAGEMENT	2-1-0		
OTE:	- William	ABILLIKA		191	

ELECTRICAL & ELECTRONICS ENGINEERING

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimu	m required to pass 50
Attendance	: 10
Guide	: 20
Technical Content of the Report	: 30
Presentation	: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Electrical & Electronics Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work:
 - Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation

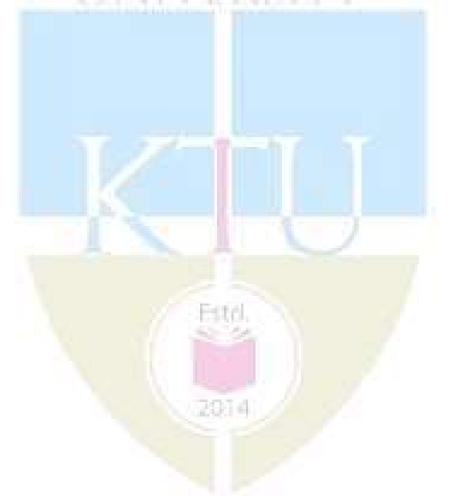
:30

:20

:30

:20

- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.


Total marks: 100, only CIE, minimum required to pass 50

Guide

Interim evaluation by the evaluation committee Final Seminar

The report evaluated by the evaluation committee

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	EET402	ELECTRICAL SYSTEM DESIGN AND ESTIMATION	2-1-0	3	3
В	EETXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	EETXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	EETXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	EET404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	EED416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET414	ROBOTICS	2-1-0		
	EET424	ENERGY MANAGEMENT	2-1-0		
В	EET434	SMART GRID TECHNOLOGIES	2-1-0	3	3
	EET444	ELECTRICAL MACHINE DESIGN	2-1-0		
	EET454	SWITCHED MODE POWER CONVERTERS	2-1-0		
	EET464	COMPUTER AIDED POWER SYSTEM	2-1-0		
		ANALYSIS			
	EET474	MACHINE LEARNING	<mark>2-1-</mark> 0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET416	NONLINEAR SYSTEMS	2-1-0		
	EET426	SPECIAL ELECTRIC MACHINES	2-1-0		
С	EET436	POWER QUALITY	2-1-0	3	3
	EET446	COMPUTER NETWORKS	2-1-0		
	EET456	DESIGN OF POWER ELECTRONIC	2-1-0		
		SYSTEMS			
	EET466	HVDC & FACTS	2-1-0]	
	EET476	ADVANCED ELECTRONIC DESIGN	2-1-0		

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET418	ELECTRIC AND HYBRID VEHICLES	2-1-0		
	EET428	INTERNET OF THINGS	2-1-0		
D	EET438	ENERGY STORAGE SYSTEMS	2-1-0	3	3
	EET448	ROBUST AND ADAPTIVE CONTROL	2-1-0		
	EET458	SOLAR PV SYSTEMS	2-1-0	100	
	EET468	INDUSTRIAL INSTRUMENTATION	2-1-0		
		&AUTOMATION	1 3	7 T	
	EET478	BIG DATA ANALYTICS	2-1-0	Calor Co.	
		TKIIY ED CITY	6		
		1.14 W 1. W 1. TV 3.1-1-			

PROGRAM ELECTIVE V

NOTE

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible:
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75 Guide Interim evaluation, 2 times in the semester by the evaluation committee : 50 Quality of the report evaluated by the above committee : 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three-member committee

:40

: 30

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for **B. Tech Minor in ELECTRICAL & ELECTRONICS ENGINEERING** can opt to study the courses listed below:

S e		BASKET I				BASKET II		d		BASKET III		
m e st er	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S3	EET281	ELECTRIC CIRCUITS	4	4	EET 283	INTRODUCTION TO POWER ENGINEERING	4	4	EET 285	DYNAMIC CIRCUITS AND SYSTEMS	4	4
S4	EET 282	ELECTRICAL MACHINES	4	4	EET 284	ENERGY SYSTEMS	4	4	EET 286	PRINCIPLES OF INSTRUMENTATI ON	4	4
S5	EET 381	SOLID STATE POWER CONVERSION	4	4	EET 383	SOLAR AND WINDENERGY CONVERSION SYSTEMS	4	4	EET 385	CONTROL SYSTEMS	4	4
S6	EET 382	POWER SEMICONDUCTOR DRIVES	4	4	EET 384	INSTRUMENTATION AND AUTOMATION OF POWER PLANTS	4	4	EET 386	DIGITAL CONT ROL	4	4
S7	EED 481	MINIPROJECT	4	4	EED 481	MINIPROJECT	4	4	EED 481	MINIPROJECT	4	4

ELECTRICAL & ELECTRONICS ENGINEERING

							_					
S8	EED 482	MINIPROJECT	4	4	EED 482	MINIPROJECT	4	4	EED 482	MINIPROJECT	4	4

Notes on Minor from Electrical Engineering Department:

Students have to credit additional 5 courses (20 credits) to receive minor in Electrical and Electronics Engineering. While choosing the minor basket, at least two courses in the selected basket should have contents different from the courses in the curriculum of the parent branch. (This is necessary in the case of related branches like Electronics and Communication, Electronics and Instrumentation, Applied Electronics and Instrumentation, Electronics and Biomedical, Computer Science and Engineering etc.) In case where the student chooses a basket with only two courses different from their parent curriculum, the remaining courses have to be selected from the approved MOOC courses. This restriction may be incorporated in the regulations/curriculum.

HONOURS

Honours is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).

- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for B.Tech Honours in ELECTRICAL & ELECTRONICS ENGINEERING can opt to study the courses listed below:

		GROUP I				GROUP II				GROUP III		
S e m es te r	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R D I T
S4	EET292	NETWORK ANALYSIS AND SYNTHESIS	4	4	EET 294	NETWORK ANALYSIS AND SYNTHESIS	4	4	EET 296	NETWORK ANALYSIS AND SYNTHESIS	4	4
S5	EET393	DIGITAL SIMULATION	4	4	EET 395	DIGITAL SIMULATION	4	4	EET 397	DIGITAL SIMULATION	4	4
S6	EET394	GENERALISED MACHINE THEORY	4	4	EET 396	ANALYSIS OF POWER ELECTRONIC CIRCUITS	4	4	EET 398	OPERATION AND CONTROL OF POWER SYSTEMS	4	4
S7	EET495	OPERATION AND CONTROL OF GENERATORS	4	4	EET 497	DYNAMICS OF POWER CONVERTERS	4	4	EET 499	CONTROL AND DYNAMICS OF MICROGRIDS	4	4
S8	EED496	MINIPROJECT	4	4	EED 496	MINIPROJECT	4		EED 496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech FOOD TECHNOLOGY

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points		50	1		1		50		
Credits for Activity				2					2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
	and a second part of the second se
T	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	Sl.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
_, _	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
·	ESL 130	ELECTRICAL & ELECTRONICS	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2403

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
·	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
·	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
·	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

 Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.

2914

2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
				the second	
В	FTT 201	PRINCIPLES OF CHEMICAL ENGINEERING	3-1-0	4	4
С	FTT 203	FOOD MICROBIOLOGY	3-1-0	4	4
D	FTT 205	FOOD CHEMISTRY	3-1-0	4	4
E 1/2	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
·	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	FTL 201	FOOD MICROBIOLOGY LAB I	0-0-3	3	2
Т	FTL 203	FOOD CHEMISTRY LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
			1	26/30	22/26
		TOTAL			

NOTE:

 Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estel.

2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	FTT 202	FUNDAMENTALS OF HEAT AND MASS TRANSFER	3-1-0	4	4
С	FTT 204	ENGINEERING PROPERTIES OF FOOD MATERIALS	3-1-0	4	4
D	FTT 206	FOOD ENGINEERING THERMODYNAMICS AND REACTION KINETICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	FTL 202	FOOD MICROBIOLOGY LAB II	0-0-3	3	2
Т	FTL 204	ENGINEERING PROPERTIES OF FOOD MATERIALS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
TOTAL				26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Hid.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	FTT 301	FOOD PROCESS ENGINEERING	3-1-0	4	4
В	FTT 303	UNIT OPERATIONS IN FOOD PROCESSING	3-1-0	4	4
С	FTT 305	FOOD ANALYSIS	3-1-0	4	4
D	FTT 307	CEREAL AND LEGUME TECHNOLOGY	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	FTL 331	UNIT OPERATIONS IN FOOD LAB	0-0-3	3	2
Т	FTL 333	FOOD ANALYSIS AND QUALITY EVALUATION LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES		HOURS	CREDIT
А	FTT 302	DAIRY TECHNOLOGY		4	4
В	FTT 304	FOOD PROCESS EQUIPMENT AND DESIGN	3-1-0	4	4
С	FTT 306	FOOD ADDITIVES AND FLAVOURINGS	3-1-0	4	4
D	FTTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	FTT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	FTL 332	FOOD PROCESSING LAB	0-0-3	3	2
Т	FTD334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FTT 312	FRUITS AND VEGETABLE PROCESSING	2-1-0		
	FTT 322	FOOD PRODUCT DESIGN AND	2-1-0		
		DEVELOPMENT		3	3
D	FTT 332	BAKERY AND CONFECTIONERY	2-1-0]	
	FTT 342	FOOD BIOTECHNOLOGY	2-1-0		
	FTT 352	REFRIGERATION AND COLD CHAIN	2-1-0		
	FTT 362	MODELLING AND SIMULATION IN	2-1-0		
		FOOD PROCESSING			
	FTT 372	NANOTECHNOLOGY IN FOOD	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks

Split up for CIE Attendance

Guide

Project Report

: 10 2014 : 15 : 10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	FTT 401	FOOD PROCESSING AND PRESERVATION	2-1-0	3	3
В	FTTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
C	FTTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	FTL 411	FOOD PRESERVATION LAB	0-0-3	3	2
Т	FTQ413	SEMINAR	0-0-3	3	2
U	FTD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	5	TOTAL	52	24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FTT 413	FOOD PACKAGING TECHNOLOGY	2-1-0		
	FTT 423	TECHNOLOGY OF FOOD	2-1-0		
		EMULSIONS, FOAMS AND GELS		3	3
В	FTT 433	NON THERMAL PROCESSING	2-1-0		
	FTT 443	SPICES AND PLANTATION CROPS	2-1-0		
		TECHNOLOGY			
	FTT 453	MEAT AND FISH PROCESSING	2-1-0]	
		TECHNOLOGY			
	FTT 463	POST HARVEST PHYSIOLOGY AND	2-1-0]	
		SPOILAGE IN FOOD			
	FTT 473	INSTRUMENTATION AND PROCESS	2-1-0		
		CONTROL IN FOOD INDUSTRY			

1. OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the **the Department of FOOD TECHNOLOGY for students of other undergraduate branches offered in the college.**

FOOD TECHNOLOGY

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FTT 415	FOOD PROCESS ENGINEERING	2-1-0		
	FTT 425	INSTRUMENTAL METHODS IN FOOD ANALYSIS	2-1-0		
	FTT 435	UNIT OPERATIONS IN FOOD TECHNOLOGY	2-1-0	3	3
	FTT 445	NON THERMAL PROCESSING	2-1-0		

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.

3. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall guality of the report.

Total marks: 100, only CIE, minimum required to pass 50

Attendance	: 10
Guide	: 20
Technical Content of the Report	: 30
Presentation	:40

4. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Food Technology, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

- Survey and study of published literature on the assigned topic;
- > Preparing an Action Plan for conducting the investigation, including team work;
- > Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
The evaluation committee comprises HoD or a senior faculty member	, Proje

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	FTT 402	FOOD PLANT LAYOUT AND DESIGN	2-1-0	3	3
В	FTTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	FTTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	FTTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	FTT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	FTD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FTT 414	FAT AND OIL PROCESSING TECHNOLOGY	2-1-0		
	FTT 424	FOOD STORAGE ENGINEERING	2-1-0		
	FTT 434	FOOD SUPPLY CHAIN MANAGEMENT	2-1-0	3	3
В	FTT 444	EXTENSION AND TRANSFER OF TECHNOLOGY	2-1-0		
	FTT 454	NEUTRACEUTICALS AND FUNCTIONAL FOODS	2-1-0		
	FTT 464	FOOD TOXICOLOGY	2-1-0		
	FTT 474	BEVERAGE PROCESSING	<mark>2-1-</mark> 0		
ROGRA	M ELECTIV	'E IV	-/		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FTT 416	FOOD QUALITY, SAFETY AND REGULATIONS	2-1-0		
	FTT 426	ENTREPRENEURSHIP DEVELOPMENT IN FOOD	2-1-0		
		TECHNOLOGY		3	3
	FTT 436	BYE-PRODUCT UTILIZATION IN FOOD	2-1-0		
C		INDUSTRY			
C	FTT 446	FOOD PLANT UTILITIES, MAINTENANCE AND	2-1-0		
		SAFETY			
	FTT 456	FERMENTATION AND ENZYME TECHNOLOGY	2-1-0		
	FTT 466	BIOPROCESS ENGINEERING	2-1-0		
	FTT 476	MEMBRANE TECHNOLOGY IN FOOD	2-1-0		
		ENGINEERING			

PROGRAM ELECTIVE V

	NO.	COURSES	L-T-P	HOURS	CREDIT
FT	TT 418	FOOD LAWS AND REGULATIONS	2-1-0		
FT	TT 428	ICT APPLICATIONS IN FOOD INDUSTRY	2-1-0		
F	TT 438	FOOD INDUSTRY WASTE MANAGEMENT	2-1-0	3	3
D F	TT 448	PHYTOCHEMICALS IN FOOD	2-1-0		
F	TT 458	FOOD INFORMATICS	2-1-0		
F	TT 468	AUTOMATION IN FOOD INDUSTRY	2-1-0		
FT	TT 478	MANAGEMENT OF FOOD PROCESSING INDUSTRY	2-1-0		

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;
 - Preparing a paper for Conference presentation/Publication in Journals, if possible;

- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project
coordinator and project supervisor).: 40Final evaluation by a three member committee: 40(The final evaluation committee comprises Project coordinator, expert from

Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum, of which one course shall be a mini project based on the

chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in FOOD TECHNOLOGY can opt to study the courses listed below:

S e		Basket I				Basket II				Basket III		
m e st e r	Course No. Course Name		H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H C U R S	R
S 3	FTT281	PRINCIPLES OF FOOD TECHNOLOGY	4	4	FTT283	FOOD SCIENCE AND	4	4	FTT285	INTRODUCTORY FOOD TECHNOLOGY	4	4
S 4	FTT 282	FOOD PROCESS ENGINEERIN G	4	4	FTT284	UNIT OPERATIONS IN FOOD PROCESSING	4	4	FTT286	FOOD PRESERVATION AND PROCESSING TECHNOLOGY	4	4
S 5	FTT381	FOOD PACKAGING TECHNOLOGY	4	4	FTT383	FOOD PLANT LAYOUT AND DESIGN	4	4	FTT385	FOOD PRODUCT DESIGN AND DEVELOPMENT	4	4
S 6	FTT382	FOOD ANALYSIS	4	4	FTT384	FOOD QUALITY, SAFETY AND REGULATION	4	4	FTT386	ENTREPRENEURSHI P DEVELOPMENT IN FOOD INDUSTRY	4	4
S 7	FTD481	MINIPROJECT	4	4	FTD481	MINIPROJECT	4	4	FTD481	MINIPROJECT	4	4
S 8	FTD482	MINIPROJECT	4	4	FTD482	MINIPROJECT	4	4	FTD482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses lited in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such

FOOD TECHNOLOGY

courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in FOOD TECHNOLOGY** can opt to study the courses listed below:

			-	-9	1.1.1.1		-		and the second			
		Group I	ł	ţ		Group III			C.A	Group III		
Se m es te r	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S4	FTT292	ADVANCED FOOD MICROBIOLOGY	4	4	FTT294	ADVANCED SEPARATION PROCESSES IN FOOD PROCESSING	4	4	FTT296	NOVEL FOOD PROCESSING TECHNOLOGY	4	4
S5	FTT393	ADVANCED FLUID MECHANICS	4	4	FTT395	COMPUTER AIDED DESIGN OF FOOD PLANT, MACHINERY AND EQUIPMENT	4	4	FTT397	ADVANCES IN FOOD PACKAGING	4	4
S6	FTT394	EMERGING TECHNIQUES IN FOOD QUALITY AND SAFETY	4	4	FTT396	FOOD RHEOLOGY AND MICROSTRUCTUR E	4	4	FTT398	FOOD PRODUCTS MONITORING AND CONTROL	4	4
S7	FTT495	RESEARCH METHODOLOGY AND STATISTICS	4	4	FTT497	FOOD BUSINESS LAWS AND LEGISLATION	4	4	FTT499	AGRO INDUSTRIAL PROJECT PLANNING AND MANAGEMENT	4	4
S8	FTD496	MINIPROJECT	4	4	FTD496	MINIPROJECT	4	4	FTD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech INDUSTRIAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credit s
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50					50		
Credits Activity	for				2					2
G. Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table 1.

	Table 1: Code for the courses						
Code	Description						
Т	Theory based courses (other the lecture hours, these courses can have tutorial						
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)						
L	Laboratory based courses (where performance is evaluated primarily on the basis						
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)						
Ν	Non-credit courses						
D	Project based courses (Major, Mini Projects)						
Q	Seminar Courses						

Course Number is a three-digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four-year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical (Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU		Robotics and	
			29	Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLO	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
т	2000	1 421111	1000	1. 16	AGA I
A	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
1/2		TOTAL TACK TOTAL	1.1.1.1.1.1.1.1.1	17	
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUN101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL	1	23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLO	COURSE NO.	COURSES	L-T-P	HOUR	CREDI
т	Af	ABDULU	CA.	S	W
A	MAT102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	•	TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive

INDUSTRIAL ENGINEERING

thinking, improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO:	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL EQUATION	3-1-0	4	4
	AT	AND COMPLEX ANALYSIS	CAL	AW	
В	IET201	THEORY OF MACHINES AND DESIGN	3-1-0	4	4
C	IET203	FLUID MECHANICS AND HYDRAULIC MACHINES	3-1-0	4	4
D	IET205	MATERIALS AND MANUFACTURING	3-1-0	4	4
		PROCESSES			
E	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	IEL201	FLUID MECHANICS AND	0-0-3	3	2
		HYDRAULICMACHINES LAB			
Т	MEL203	MATERIAL TESTING LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4*	4
		Total		30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

F-CT-A

 *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO:				
A	MAT212	INTRODUCTION TO STOCHASTIC MODELS	3-1-0	4	4
В	IET202	WORK SYSTEM DESIGN	3-1-0	4	4
С	IET204	OPERATIONS MANAGEMENT	3-1-0	4	4
D	IET206	MACHINE TOOLS AND DIGITAL MANUFACTURING	3-1-0	4	4
E 1/2	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	IEL202	WORK SYSTEM DESIGN LAB	0-0-3	3	2
Т	IEL204	MACHINE TOOLS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	IET 301	SUPPLY CHAIN AND LOGISTICS MANAGEMENT	3-1-0	4	4
В	IET 303	OPERATIONS RESEARCH	3-1-0	4	4
С	IET 305	THERMAL ENGINEERING	3-1-0	4	4
D	IET 307	OBJECT ORIENTED PROGRAMMING	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	IEL 331	THERMAL ENGINEERING LAB	0-0-3	3	2
Т	IEL 333	OBJECT ORIENTED PROGRAMMING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	9	31	23/27

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	IET302	SYSTEM MODELLING AND SIMULATION	3-1-0	4	4
В	IET304	ADVANCED OPERATIONS RESEARCH	3-1-0	4	4
С	IET306	DATA ANALYSIS	3-1-0	4	4
D	IETXXX	PROGRAMELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	IET308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	IEL332	SIMULATION LAB	0-0-3	3	2
Т	IEL334	DATA ANALYSIS AND OPTIMISATION LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	1	TOTAL		29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	MET312	NONDESTRUCTIVE TESTING	2-1-0		
	IET322	MANAGEMENT OF PROJECTS	2-1-0		
	MET332	ADVANCED MECHANICS OF SOLIDS	2-1-0		
D	MET342	IC ENGINE COMBUSTION AND POLLUTION	2-1-0	3	3
	MET352	AUTOMOBILE ENGINEERING	2-1-0		
	MET362	PRODUCT DESIGN AND DEVELOPMENT	2-1-0		
	MET372	ADVANCED METAL JOINING TECHNIQUES	2-1-0		

Ferd

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO:	COURSES	L-T-P	HOURS	CREDIT
A	IET401	QUALITY ENGINEERING	2-1-0	3	3
В	ΙΕΤΧΧΧ	PROGRAM ELECTIVE II	2-1-0	3	3
С	IETXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	IEL411	QUALITY CONTROL LAB	0-0-3	3	2
Т	IEQ413	SEMINAR	0-0-3	3	2
U	IED415	PROJECT PHASE 1	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	MET413	ADVANCED METHODS IN NONDESTRUCTIVE TESTING	2-1-0		
	IET423	ENTERPRISE RESOURCE PLANNING	2-1-0		
	MET433	FINITE ELEMENT METHOD	2-1-0		
В	IET443	DATA ANALYTICS USING R AND PYTHON	2-1-0	3	3
	MET453	HYBRID AND ELECTRIC VEHICLES	2-1-0		
	IET463	DESIGN AND ANALYSIS OF ALGORITHMS	2-1-0		
	IET473	BLOCK CHAIN TECHNOLOGY	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered to the students of all undergraduate branches offered in the college other than Industrial Engineering program under KTU

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	IET415	TOTAL QUALITY MANAGEMENT	2-1-0		
	IET425	MAINTENANCE ENGINEERING AND MANAGEMENT	2-1-0		
C	IET435	SYSTEM SIMULATION	2-1-0	2	2
	IET445	SUPPLY CHAIN MANAGEMENT	2-1-0	5	5
	IET455	FACILITIES PLANNING AND MATERIAL HANDLING	2-1-0]	

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report. Total marks: 100, only CIE, minimum required to pass 50

	/	
Attendance		: 10
Guide		: 20
Technical Content of the	Report	: 30
Presentation		: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Industrial Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - > Survey and study of published literature on the assigned topic;
 - > Preparing an Action Plan for conducting the investigation, including team work;
 - > Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - > Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - > Preparing a Written Report on the Study conducted for presentation to the Department;
 - > Final Seminar, as oral Presentation before a departmental committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	IET402	APPLIED ERGONOMICS	2-1-0	3	3
	41.00	a strange to complete		5	5
В	IETXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	IETXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	IETXXX	PROGRAM ELECTIVE V	2-1-0	3	3
E	IET404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1
U	IED416	PROJECT PHASE 2	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	TOTAL			28	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO:	COURSES	L-T-P	HOURS	CREDIT
	IET414	BIOMATERIALS	2-1-0		
	MET424	DECISIONS WITH METAHEURISTICS	2-1-0		
В	IET434	TIME SERIES ANALYSIS	2-1-0		
	IET444	MULTIVARIATE DATA ANALYSIS	2-1-0	3	3
	IET <mark>454</mark>	DESIGN AND ANALYSIS OF EXPERIMENTS	2-1-0		
	MET4 <mark>64</mark>	MICRO AND NANO MANUFACTURING	2-1-0		
	IET474	TOTAL QUALITY MANAGEMENT AND SIX SIGMA	2-1-0		
PROGRAM ELECTIVE IV					

SLOT	COURSE NO:	COURSES	L-T-P	HOURS	CREDIT
	MET 416	COMPOSITE MATERIALS	2-1-0		
	MET 426	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	2-1-0		
	IET436	FINANCIAL AND MANAGERIAL ACCOUNTING	2-1-0		
с	IET446	MULTI-CRITERIA DECISION MAKING TECHNIQUES	2-1-0	3	3
	MET 456	ROBOTICS AND AUTOMATION	2-1-0		5
	MET 466	TECHNOLOGY MANAGEMENT	2-1-0		
	IET476	GROUP TECHNOLOGY AND FLEXIBLE MANUFACTURING SYSTEMS	2-1-0		

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	MET 418	RELIABILITY ENGINEERING	2-1-0		
	MET 428	INDUSTRIAL INTERNET OF THINGS	2-1-0		
	IET438	FINANCIAL ENGINEERING	2-1-0	1.00	
D	IET448	BIG DATA ANALYTICS	2-1-0	3	3
	IET458	INDUSTRIAL SCHEDULING	2-1-0		
	MET 468	ADDITIVE MANUFACTURING	2-1-0		
	IET478	RISK ANALYSIS IN DECISION MAKING	2-1-0	And Address of the Ad	

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - > In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - > Review and finalization of the Approach to the Problem relating to the assigned topic;
 - > Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - > Final development of product/process, testing, results, conclusions and future directions;
 - > Preparing a paper for Conference presentation/Publication in Journals, if possible;
 - > Preparing a Dissertation in the standard format for being evaluated by the Department;
 - > Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).Final evaluation by a three-member committee: 40(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute

and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M** slot courses.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2

MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in INDUSTRIAL ENGINEERING** can opt to study the courses listed below:

SEMESTER		BASKET-1						
	COURSE	COURSES	HOURS	CREDIT				
	NO.	sectors and a sector particular de la consector de	_					
S3	IET281	WORK STUDY AND ERGONOMICS	4	4				
S4	IET282	PRODUCTION AND OPERATIONS	4	4				
		MANAGEMENT						
S5	IET381	DECISION SCIENCES	4	4				
S6	IET382	INSPECTION AND QUALITY CONTROL	4	4				
S7	IED481	MINI PROJECT	4	4				
S8	IED482	MINI PROJECT	4	4				

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

FetAl

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in INDUSTRIAL ENGINEERING** can opt to study the courses listed below:

SEMESTER	GROUP I							
	COURSE	COURSES	HOURS	CREDIT				
	NO.							
S4	IET292	BASICS OF FINANCIAL MARKET	4	4				
S5	IET393	FINANCIAL REPORTING AND ANALYSIS	4	4				
S6	IET394	DERIVATIVES AND ALTERNATIVE	4	4				
		INVESTMENTS						

S7	IET495	QUANTITATIVE TRADING	4	4
S8	IED496	MINI PROJECT	4	4

SEMESTER	GROUP II								
	COURSE NO.	COURSES	HOURS	CREDIT					
S4	IET294	ORGANIZATIONAL BEHAVIOUR AND PERSONNEL MANAGEMENT	4	4					
S5	IET395	MARKETING MANAGEMENT	4	4					
S6	IET396	FINANCIAL MANAGEMENT	4	4					
S7	IET497	MANAGEMENT INFORMATION SYSTEMS	4	4					
S8	IED496	MINI PROJECT	4	4					

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the freshers to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech INSTRUMENTATION AND CONTROL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50				7	50		
Credits Activity	for				2					2
G.Total										162

INSTRUMENTATION AND CONTROL ENGINEERING

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table 1: Code for the courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	Sl.No	Department	Course Prefix	
	ALCONT ALSO	1751		AND ALL ADDRESS		
01	Aeronautical Engg	AO	16	Information Technology		
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC	
03	Automobile	AU	18	Mandatory Courses	MC	
04	Biomedical Engg	BM	19	Mathematics	MA	
05	Biotechnology	BT	20	Mechanical Engg	ME	
06	Chemical Engg	СН	21	Mechatronics	MR	
07	Chemistry	СҮ	22	Metallurgy	MT	
08	Civil Engg	CE	23	Mechanical (Auto)	MU	
09	Computer Science	CS	24	Mechanical(Prod)	MP	
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB	
11	Electronics & Biomedical	EB	26	Physics	PH	
12	Electronics & Communication	EC	27	Polymer Engg	PO	
13	Food Technology	FT_	28	Production Engg	PE	
14	Humanities	HU	29	Robotics and Automation	RA	
15	Industrial Engg	IE	30	Safety & Fire Engg	FS	

Table 2: Departments and their codes

INSTRUMENTATION AND CONTROL ENGINEERING

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDI
Α	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT100	ENGINEERING PHYSICS A	3-1-0	4	4
_/ _	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT100	ENGINEERING PHYSICS A	3-1-0	4	4
-	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
,	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLYcan choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	ICT201	BASICS OF INSTRUMENTATION ENGINEERING & TRANSDUCER	3-1-0	4	4
С	ICT203	DESIGN OF LOGIC CIRCUITS	3-1-0	4	4
D	ICT205	ELECTRONIC CIRCUITS AND NETWORKS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	ICL201	LOGIC CIRCUITS LAB	0-0-3	3	2
Т	ICL203	ELECTRONIC DEVICES AND CIRCUITS	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL)	26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

12.0

2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND	3-1-0	4	4
	ARTE	NUMERICAL METHODS	1.11	tuch i	
В	ICT202	MEASUREMENTS AND INSTRUMENTATION	3-1-0	4	4
С	ICT204	INTEGRATED CIRCUITS AND SYSTEMS	3-1-0	4	4
D	ICT206	CONTROL ENGINEERING I	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	ICL202	TRANSDUCERS AND MEASUREMENTS LAB	0-0-3	3	2
Т	ICL204	ANALOG CIRCUITS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estel.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ICT301	INDUSTRIAL INSTRUMENTATION 1	3-1-0	4	4
В	ICT303	CONTROL ENGINEERING II	3-1-0	4	4
С	ICT305	MICROCONTROLLERS	3-1-0	4	4
D	ICT307	SIGNALS & SYSTEMS	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	ICL331	SYSTEM SIMULATION LAB	0-0-3	3	2
Т	ICL333	MICROCONTROLLERS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL	1	27/31	23/27

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

Estd.

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ICT302	INDUSTRIAL INSTRUMENTATION 2	3-1-0	4	4
В	ICT304	PROCESS CONTROL	3-1-0	4	4
С	ICT306	DISCRETE-TIME SIGNAL PROCESSING	3-1-0	4	4
D	ІСТХХХ	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	ICT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	ICL332	INDUSTRIAL INSTRUMENTATION LAB	0-0-3	3	2
Т	ICD334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ICT312	NONLINEAR DYNAMICS AND CHAOS	2-1-0		
	ICT322	VIRTUAL INSTRUMENTATION	2-1-0		
	ICT332	SOFT COMPUTING	2-1-0	3	3
D	ICT342	ANALYTICAL INSTRUMENTATION	2-1-0		
	ICT352	NUMERICAL METHODS	2-1-0		
	ICT362	BIOMEDICAL INSTRUMENTATION	2-1-0]	
	ICT372	TOTAL QUALITY MANAGEMENT	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks

Split up for CIE Attendance

Guide

Project Report

: 10 2014 : 15 : 10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

INSTRUMENTATION AND CONTROL ENGINEERING

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	ICT401	PLC AND DCS	2-1-0	3	3
В	ICTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	ІСТХХХ	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	ICL411	PROCESS CONTROL LAB	0-0-3	3	2
Т	ICQ413	SEMINAR	0-0-3	3	2
U	ICD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	_	TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ICT413	DIGITAL CONTROL	2-1-0		
	ICT423	INDUSTRIAL PROCESS CONTROL	2-1-0		
В	ICT433	DATA ACQUISITION AND SIGNAL	2-1-0	3	3
		CONDITIONING			
	ICT443	REFINERY INSTRUMENTATION	2-1-0		
	ICT453	DESIGN OF DIGITAL SYSTEMS	2-1-0		
	ICT463	BIOMEDICAL IMAGING SYSTEMS	2-1-0		
	ICT473	CORROSION CONTROL	2-1-0		

2914

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the **Department of INSTRUMENTATION &CONTROL ENGINEERING for students of other undergraduate branches offered in the college under KTU.**

INSTRUMENTATION AND CONTROL ENGINEERING

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ICT 415	ENVIRONMENTAL INSTRUMENTATION	2-1-0	3	
C	ICT 425	INDUSTRIAL INSTRUMENTATION	2-1-0		3
	ICT 435	AUTOMOBILE INSTRUMENTATION	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course
- (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.


Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Instrumentation and Control, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - > Preparing an Action Plan for conducting the investigation, including team work;
 - > Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - Preparing a Written Report on the Study conducted for presentation to the Department;
 - Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30

The report evaluated by the evaluation committee : 20 The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	ICT402	INSTRUMENTATION SYSTEM DESIGN	2-1-0	3	3
В	ΙCTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	ІСТХХХ	PROGRAM ELECTIVE IV	2-1-0	3	3
D	ІСТХХХ	PROGRAM ELECTIVE V	2-1-0	3	3
Т	ICT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	ICD416	PROJECT PHASE II	0-0- 12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ICT414	NUMERICAL COMPUTATION USING PYTHON	2-1-0		
	ICT424	INDUSTRIAL NETWORKS	2-1-0	3	3
В	ICT434	ARTIFICIAL INTELLIGENCE	2-1-0		
	ICT444	POWER PLANT INSTRUMENTATION	2-1-0		
	ICT454	IOT AND APPLICATIONS	2-1-0		
	ICT464	IMAGE PROCESSING	2-1-0		
	ICT474	REMOTE SENSING AND CONTROL	2-1-0		
OGRA	M ELECTIVE IV		13		<u> </u>

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ICT416	SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL	2-1-0		
с	ICT426	INSTRUMENTATION AND CONTROL IN LARGE SCALE INDUSTRIES	2-1-0	3	3
	ICT436	MEMS	2-1-0		
	ICT446	AUTOMOBILE INSTRUMENTATION	2-1-0		
	ICT456	VHDL PROGRAMMING	2-1-0]	
	ICT466	BIOMEDICAL SIGNAL PROCESSING	2-1-0		
	ICT476	AEROSPACE ENGINEERING AND	2-1-0		
		NAVIGATION INSTRUMENTATION			

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ICT418	MODERN METHODS OF INSTRUMENT	2-1-0		
		ANALYSIS			
	ICT428	HYDRAULICS AND PNEUMATICS	2-1-0	3	3
D	ICT438	INDUSTRIAL DRIVES AND CONTROL	2-1-0		
	ICT448	INSTRUMENTATION FOR AGRICULTURE	2-1-0	1001	
	ICT458	EMBEDDED SYSTEM DESIGN	2-1-0		
	ICT468	BIOMECHANICS	2-1-0	ŀ	
	ICT478	OPTO ELECTRONICS AND	2-1-0	Calor Co.	
		INSTRUMENTATION	1		
NOTE		74.M.F.A. 1012 (21.1 -			

PROGRAM ELECTIVE V

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. Project Phase II: The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed:
 - Final development of product/process, testing, results, conclusions and future directions:
 - Preparing a paper for Conference presentation/Publication in Journals, if possible;

- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project
coordinator and project supervisor).: 40Final evaluation by a three member committee: 40(The final evaluation committee and a senior faculty from a sister department. The same

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

committee will conduct comprehensive course viva for 50 marks).

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based

on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in INSTRUMENTATION & CONTROL can opt to study the courses listed below: Also mention the programs that are eligible for registering the minor.

Specialisation	Automat	K			Signal Co	Data Acquisition an onditioning		
Eligible	AE, BM,	CH, EE, EC, FT, IE, S	B, F	S	AQ, AE, A FT, ME, I	~	EC,	
S e		BASKET I	E	(t	d.	BASKET II		
m e st er	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S3	ICT 281	INTRODUCTION TO SENSORS AND TRANSDUCERS	4	4	ICT 283	CIRCUIT DESIGN ANALYSIS FOR INSTRUMENTATION	4	4
S4	ICT 282	LINEAR SYSTEM ANALYSIS	4	4	ICT 284	INTRODUCTION TO VIRTUAL INSTRUMENTATION	4	4
S5	ICT 381	PROCESS AUTOMATION	4	4	ICT 383	DATA ACQUISITION AND SIGNAL CONDITIONINGFOR INSTRUMENTATION	4	4
S6	ICT 382	PRINCIPLES OF PROCESS CONTROL	4	4	ICT 384	ROLE OF IOTIN DATA ACQUISITION AND AUTOMATION	4	4

INSTRUMENTATION AND CONTROL ENGINEERING

	S7	ICD 481	MINIPROJECT	4	4	ICD 481	MINIPROJECT	4	4
ĺ	S8	ICD 482	MINIPROJECT	4	4	ICD 482	MINIPROJECT	4	4

HONOURS

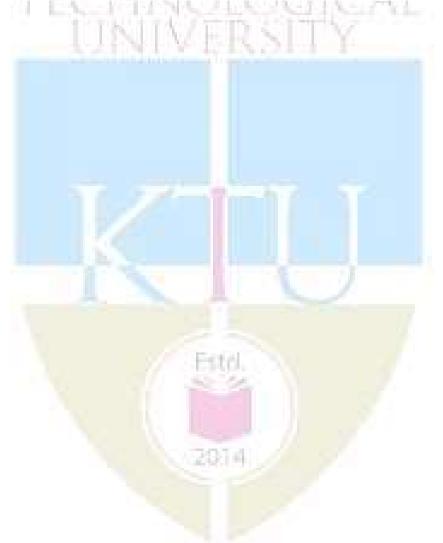
Honours is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than

or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in INSTRUMENTATION & CONTROL ENGINEERING** can opt to study the courses listed below:


		GROUP I				GROUP II		
S e m es te r	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R E D I T
S4	ICT292	ENGINEERING OPTIMIZATION	4	4	ICT 294	MECHATRONIC SYSTEMS	4	4
S5	ICT 393	PROCESS DYNAMICS	4	4	ICT 395	PRINCIPLES OF ROBOTICS	4	4
S6	ICT 394	ADVANCED PROCESS CONTROL	4	4	ICT 396	FIELD AND SERVICE ROBOTICS	4	4
S7	ICT 495	INTELLIGENT CONTROL	4	4	ICT 497	MACHINE VISION SYSTEMS	4	4
S8	ICD 496	MINIPROJECT	4	4	ICD 496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech INFORMATION TECHNOLOGY

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50					50		
Credits Activity	for				2	1				2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other than the lecture hours, these courses can have
	tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses
D	Non-credit courses Project based courses (Major, Mini Projects)

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix	
01	Aeronautical Engg	AO	16	Information Technology	IT	
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC	
03	Automobile	AU	18	Mandatory Courses	MC	
04	Biomedical Engg	BM	19	Mathematics	MA	
05	Biotechnology	BT	20	Mechanical Engg	ME	
06	Chemical Engg	СН	21	Mechatronics	MR	
07	Chemistry	СҮ	22	Metallurgy	MT	
08	Civil Engg	CE	23	Mechanical (Auto)	MU	
09	Computer Science	CS	24	Mechanical(Prod)	MP	
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB	
11	Electronics & Biomedical	EB	26	Physics	РН	
12	Electronics & Communication	EC	27	Polymer Engg	РО	
13	Food Technology	FT	28	Production Engg	PE	
14	Humanities	HU	29	Robotics and Automation	RA	
15	Industrial Engg	IE	30	Safety & Fire Engg	FS	

Table 2: Departments and their codes

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
·	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
		EQUATIONS AND TRANSFORMS			
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in S1 and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, and POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT203	DISCRETE MATHEMATICAL STRUCTURES	3-1-0	4	4
В	ITT201	DATA STRUCTURES	3-1-0	4	4
С	ITT203	DIGITAL SYSTEM DESIGN	3-1-0	4	4
D	ITT205	PROBLEM SOLVING USING PYTHON	3-1-0	4	4
E 1\2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	ITL201	DATA STRUCTURES LAB	0-0-3	3	2
Т	ITL203	PROGRAMMING AND SYSTEM UTILITIES LAB	0-0-3	3	2
R∖M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4*	4
		TOTAL		30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT208	PROBABILITY, STATISTICS AND ADVANCED GRAPH THEORY	3-1-0	4	4
В	ITT202	PRINCIPLES OF OBJECT ORIENTED TECHNIQUES	3-1-0	4	4
С	ITT204	COMPUTER ORGANIZATION	3-1-0	4	4
D	ITT206	DATABASE MANAGEMENT SYSTEMS	3-1-0	4	4
E 1\2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	ITL202	OBJECT ORIENTED TECHNIQUES LAB	0-0-3	3	2
Т	ITL204	DATABASE MANAGEMENT SYSTEMS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO				
A	ITT301	WEB APPLICATION DEVELOPMENT	3-1-0	4	4
В	ITT303	OPERATING SYSTEM CONCEPTS	3-1-0	4	4
C	ITT305	DATA COMMUNICATION AND NETWORKING	3-1-0	4	4
D	ITT307	FORMAL LANGUAGES AND AUTOMATA THEORY	3-1-0	4	4
E	ITT309	MANAGEMENT FOR SOFTWARE ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	ITL331	OPERATING SYSTEM AND NETWORK PROGRAMMING LAB	0-0-3	3	2
Т	ITL333	WEB APPLICATION DEVELOPMENT LAB	0-0-3	3	2
R\M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		31	23/27

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

2014

SEMESTER VI

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	ITT302	INTERNETWORKING WITH TCP/IP	3-1-0	4	4
В	ITT304	ALGORITHM ANALYSIS AND DESIGN	3-1-0	4	4
С	ITT306	DATA SCIENCE	3-1-0	4	4
D	ΙΤΤΧΧΧ	PROGRAME ELECTIVE I	2-1-0	3	3
E	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
F	ITT308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	ITL332	COMPUTER NETWORKS LAB	0-0-3	3	2
Т	ITD334	MINIPROJECT	0-0-3	3	2
R\M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	ITT312	USER INTERFACE AND USER EXPERIENCE	2-1-0		
		DESIGN			
D	ITT322	COMPILER DESIGN	2-1-0		
	ITT332	SOFT COMPUTING	2-1-0	3	3
	ITT342	MICROPROCESSORS	2-1-0		
	ITT352	DISTRIBUTED SYSTEMS	2-1-0		
	ITT362	DIGITAL IMAGE PROCESSING	2-1-0		
	ITT372	SEMANTIC WEB	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and

classes shall be arranged for practising questions based on the core courses listed in the curriculum.

3. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and	I ESE 75 marks	
Split up for CIE		
Attendance	: 10	
Guide	: 15	
Project Report	: 10	
Evaluation by the Committee (will	be evaluating the leve	el of completion and
demonstration of functionality/sp	ecifications, presentation,	oral examination, work
knowledge and involvement)	: 40	

SEMESTER VII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	ITT401	DATA ANALYTICS	2-1-0	3	3
В	ΙΤΤΧΧΧ	PROGRAM ELECTIVE II	2-1-0	3	3
С	ITTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	ITL411	DATA ANALYTICS LAB	0-0-3	3	2
Т	ITQ413	SEMINAR	0-0-3	3	2
U	ITD415	PROJECT PHASE I	0-0-6	6	2
R\M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	ITT413	MOBILE COMPUTING	2-1-0		
	ITT423	ARTIFICIAL INTELLIGENCE	2-1-0		
В	ITT433	OBJECT ORIENTED MODELING AND DESIGN	2-1-0		
	ITT443	ADVANCED DATABASE MANAGEMENT	2-1-0		
		SYSTEMS		3	3
	ITT453	MACHINE LEARNING	2-1-0		
	ITT463	OPTIMIZATION AND METAHEURISTICS	2-1-0		
	ITT473	PROBABILISTIC AND STOCHASTIC	<mark>2-1-</mark> 0		
		MODELLING			

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example The courses listed below are offered by the Department of INFORMATION TECHNOLOGY for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	ITT415	WEB DESIGNING	2-1-0		
C	ITT 425	MULTIMEDIA TECHNIQUES	2-1-0	3	3
	ITT 435	FREE AND OPEN SOURCE SOFTWARE	2-1-0		
	ITT 445	MOBILE APPLICATION DEVELOPMENT	2-1-0		

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50 Attendance :10 Guide : 20 Technical Content of the Report: 30 :40 Presentation

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Information Technology, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;
 - Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - > Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - > Preparing a Written Report on the Study conducted for presentation to the Department;
 - Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

0		
(-1	110	
	aiu	

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
Interim evaluation by the evaluation committee Final Seminar	: 20 : 30

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT					
A	ITT402	CRYPTOGRAPHY AND NETWORK SECURITY	2-1-0	3	3					
В	ΙΤΤΧΧΧ	PROGRAM ELECTIVE III	2-1-0	3	3					
С	ΙΤΤΧΧΧ	PROGRAM ELECTIVE IV	2-1-0	3	3					
D	ITTXXX	PROGRAM ELECTIVE V	2-1-0	3	3					
E	ITT404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1					
U	ITD416	PROJECT PHASE II	0-0-12	12	4					
R\M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4					
	TOTAL									

PROGRAM ELECTIVE III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	ITT414	COMPUTER VISION	2-1-0		
	ITT424	CYBER AND NETWORK FORENSICS	2-1-0		
В	ITT434	CLOUD COMPUTING	2-1-0		
	ITT444	DATA MINING AND WAREHOUSING	2-1-0	3	3
	ITT <mark>454</mark>	SEARCH ENGINE OPTIMISATION	2-1-0		
	ITT464	COMPUTER GRAPHICS	2-1-0		
	IIT474	BLOCK CHAIN TECHNOLOGY	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	ITT416	SOCIAL NETWORKS ANALYSIS	2-1-0		
	ITT426	INTERNET OF THINGS	2-1-0		
	ITT436	HIGH SPEED NETWORKS	2-1-0		
C	ITT446	ADHOC AND WIRELESS SENSOR	2-1-0	3	3
		NETWORKS			
	ITT456	HUMAN COMPUTER INTERFACING			
	ITT466	PIPELINING AND PARALLEL PROCESSING	2-1-0		
	ITT476	NETWORK SCIENCE	2-1-0		

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	ITT418	INFORMATION STORAGE MANAGEMENT	2-1-0		
	ITT428	SOFTWARE QUALITY ASSURANCE	2-1-0		
D	ITT438	SOFTWARE ARCHITECTURE	2-1-0		
	ITT448	NETWORK ON CHIPS	2-1-0	3	3
	ITT458	NATURAL LANGUAGE PROCESSING	2-1-0		
	ITT468	BIO-INFORMATICS	2-1-0		
	ITT478	DEEP LEARNING	2-1-0		

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;

- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three member committee: 40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card. (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in INFORMATION TECHNOLOGY Branch** can opt to study the courses listed below.

S e	v	BASKET I /EB AND ANDROID DEVELOPMENT	ł	BASKET II COMPUTER COMMUNICATIONS						BASKET III SOFTWARE ENGINEERING				
m e st er	Course No.	Course Name	H O U R S		Course No.	Course Name	H O U R S		Course No.	Course Name	H O U R S	C R E D I T		
S3	ITT281	JAVA PROGRAMMING	4	4	ITT283	DATA COMMUNICATION	4	4	ITT285	SOFTWARE ENGINEERING	4	4		
S4	ITT282	DATABASE MANAGEMENT	4	4	ITT284	COMPUTER NETWORKS	4	4	ITT286	SOFTWARE PROJECT MANAGEMENT TECHNIQUES	4	4		
S5	ITT381	WEB APPLICATION DEVELOPMENT	4	4	ITT383	INTERNET TECHNOLOGY	4	4	ITT 385	SOFTWARE ARCHITECTURE CONCEPTS	4	4		
S6	ITT382	ANDROID PROGRAMMING	4	4	ITT384	INTERNETWORKING	4	4	ITT386	PRINCIPLES OF SOFTWARE QUALITY ASSURANCE	4	4		
S7	ITD481	MINIPROJECT	4	4	ITD481	MINIPROJECT	4	4	ITD481	MINIPROJECT	4	4		
S8	ITD482	MINIPROJECT	4	4	ITD482	MINIPROJECT	4	4	ITD482	MINIPROJECT	4	4		

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

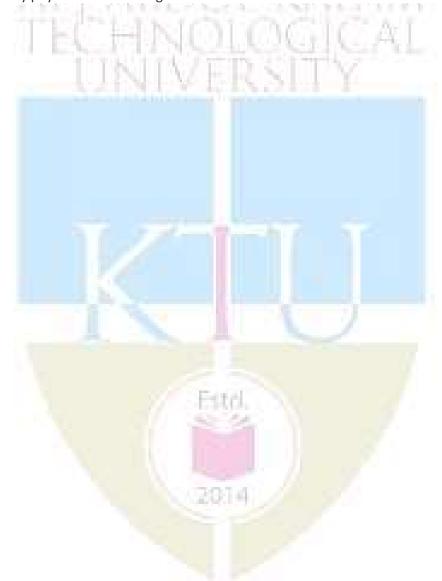
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such

INFORMATION TECHNOLOGY

courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in INFORMATION TECHNOLOGY** can opt to study the courses listed below.

S e m es te r	GROUP I				GROUP II			GROUP III				
	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	
S4	ITT292	MATHEMATICAL FOUNDATION FOR NETWORKING	4	4	ITT294	NUMBER THEORY	4	4	ITT296	MICROPROCESSOR AND MICROCONTROLLER PROGRAMMING	4	4
S5	ITT393	WIRELESS COMMUNICATIO N	4	4	ITT395	SECURITY IN COMPUTING	4	4	ITT397	ADVANCED COMPUTER ARCHITECTURE	4	4
S6	ITT394	DESIGN AND ANALYSIS OF NETWORKS	4	4	ITT396	APPLIED COMPUTER SECURITY	4	4	ITT398	EMBEDDED SYSTEM	4	4
S7	ITT495	ENTERPRISE NETWORKS	4	4	ITT497	WEB SECURITY	4	4	ITT499	ROBOTICS AND AUTOMATION	4	4
S8	ITD496	MINIPROJECT	4	4	ITD496	MINIPROJECT	4		ITD496	MINIPROJECT	4	4


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

• Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.

- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH MECHANICAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points		50				1	50		
Credits fo Activity	or			2					2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc **Engineering science courses:** Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, , Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Communication, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc.

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description						
	These based as were followed by loss of the second based on the se						
I	Theory based courses (other the lecture hours, these courses can have tutorial						
	and practical hours, e.g., L-T-P structure <mark>s 3</mark> -0-0, 3-1-2, 3-0-2 etc.)						
L	Laboratory based courses (where performance is evaluated primarily on the basis						
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)						
Ν	Non-credit courses						
D	Project based courses (Major, Mini Projects)						
Q	Seminar Courses						

Table	1: Code	for the	courses
-------	---------	---------	---------

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2. Table 2: Departments and their codes

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
-	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
	4.100	EQUATIONS AND TRANSFORMS	4.14		
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	· V	TOTAL		28/29	21

NOTE:

- 1. Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
- Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
А	MAT201	PARTIAL DIFFERENTIAL EQUATION AND	3-1-0	4	4
		COMPLEX ANALYSIS			
В	MET201	MECHANICS OF SOLIDS	3-1-0	4	4
	2002	IT A RELITION	A	18 J. C.	
C	MET203	MECHANICS OF FLUIDS	3-1-0	4	4
	1111	17 LINICALOVC	11/5	261	
D	MET205	METALLURGY & MATERIAL SCIENCE	3-1-0	4	4
E	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
1/2		Construction in the Later Later and Dispersion of the second			
-	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	MEL201	COMPUTER AIDED MACHINE DRAWING	0-0-3	3	2
Т	MEL203	MATERIALS TESTING LAB	0-0-3	3	2
		a cost of man from the			
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4**	4
l		TOTAL		26/30	22/26

NOTE:

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in \$3 and Professional Ethics in \$4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

2014

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	MAT202	PROBABILITY, STATISTICS AND	3-1-0	4	4
	2010	NUMERICAL METHODS	Ad a	E Non	
В	MET202	ENGINEERING THERMODYNAMICS	3-1-0	4	4
С	MET204	MANUFACTURING PROCESS	3-1-0	4	4
D	MET206	FLUID MACHINERY	3-1-0	4	4
E	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MEL202	FM & HM LAB	0-0-3	3	2
Т	MEL204	MACHINE TOOLS LAB-I	0-0-3	3	2
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
		26/30	22/26		

SEMESTER IV

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDI T
A	MET301	MECHANICS OF MACHINERY	3-1-0	4	4
	201	I ARINI II MES	401-04	50011	
В	MET303	THERMAL ENGINEERING	3-1-0	4	4
С	MET305	INDUSTRIAL & SYSTEMS ENGINEERING	3-1-0	4	4
D	MET307	MACHINE TOOLS AND METROLOGY	3-1-0	4	4
E	HUT300	INDUSTRIAL ECONOMICS AND	3-0-0	3	3
1/2		FOREIGN TRADE			
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	MEL331	MACHINE TOOLS LAB-II	0-0-3	3	2
Т	MEL333	THERMAL ENGINEERING LAB-I	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
I	-	TOTAL	~	27/31	23/27

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

1000

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MET302	HEAT & MASS TRANSFER	3-1-0	4	4
В	MET304	DYNAMICS OF MACHINERY & MACHINE DESIGN	3-1-0	a 4	4
С	MET306	ADVANCED MANUFACTURING ENGINEERING	3-1-0	4	4
D	METXXX	PROGRAM ELECTIVE I	2-1-0	3	3
	HUT300	INDUSTRIAL ECONOMICS AND	3-0-0	3	3
E		FOREIGN TRADE			
1/2	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MET308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED DESIGN & ANALYSIS LAB	0-0-3	3	2
Т	MEL334	THERMAL ENGINEERING LAB-II	0-0-3	3	2
R/M/	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
н		COURSE			
		TOTAL	1	25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET312	NONDESTRUCTIVE TESTING	2-1-0		
	MET322	DATA ANALYTICS FOR ENGINEERS	2-1-0		
	MET332	ADVANCED MECHANICS OF SOLIDS	2-1-0		
D	MET342	IC ENGINE COMBUSTION AND POLLUTION	2-1-0	3	3
	MET352	AUTOMOBILE ENGINEERING	2-1-0		
	MET362	PRODUCT DESIGN AND DEVELOPMENT	2-1-0		
	MET372	ADVANCED METAL JOINING	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- **All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 2 to 4 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted online by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET401	DESIGN OF MACHINE ELEMENTS	2-1-0	3	3
В	METXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	ΜΕΤΧΧΧ	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	MEL411	MECHANICAL ENGINEERING LAB	0-0-3	3	2
Т	MEQ413	SEMINAR	0-0-3	3	2
U	MED415	PROJECT PHASE I	0-0-6	6	2
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET413	ADVANCED METHODS IN	2-1-0		
		NONDESTRUCTIVE TESTING			
B	MET423	OPTIMIZATION TECHNIQUES AND	2-1-0	3	3
		APPLICATIONS			
	MET433	FINITE ELEMENT METHOD	2-1-0		
	MET443	AEROSPACE ENGINEERING	2-1-0		
	MET453	HYBRID AND ELECTRIC VEHICLES	2-1-0		
	MET463	OPERATIONS MANAGEMENT	2-1-0		
	MET473	AIR CONDITIONING AND	2-1-0		
		REFRIGERATION			

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs The courses listed below are offered by the **Department of MECHANICAL ENGINEERING for students of other undergraduate branches offered in the college under KTU.**

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET415	INTRODUCTION TO BUSINESS	2-1-0		
C		ANALYTICS			
	MET425	QUANTITATIVE TECHNIQUES FOR ENGINEERS	2-1-0	3	3
C	MET435	AUTOMOTIVE TECHNOLOGY	2-1-0	10	
	MET445	RENEWABLE ENERGY ENGINEERING	2-1-0	1.174	
	MET455	QUALITY ENGINEERING AND MANAGEMENT	2-1-0		

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of internal members comprising three senior faculty members based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50

Attendance	: 10	
Guide	: 20	Estd
Technical Content of the Report	: 30	52-6
Presentation	: 40	

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Mechanical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - > Preparing an Action Plan for conducting the investigation, including team work;
 - > Working out a preliminary Approach to the Problem relating to the assigned topic;
 - > Block level design documentation
 - > Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/

Feasibility;

- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide: 30Interim evaluation by the evaluation committee: 20Final Seminar: 30The report evaluated by the evaluation committee: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SLOT	COURSE NO.	COURSE NO.COURSESL-T-PMET402MECHATRONICS2-1-0						
A	MET402							
В	METXXX	PROGRAM ELECTIVE III	2-1-0	3	3			
С	METXXX	PROGRAM ELECTIVE IV	2-1-0	3	3			
D	METXXX	PROGRAM ELECTIVE V	2-1-0	3	3			
E	MET404		1-0-0	1	1			
U	MED416	PROJECT PHASE II	0-0-12	12	4			
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4			
		TOTAL	1	25/28	17/21			

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET414	QUALITY MANAGEMENT	2-1-0	,	
	MET424	DECISIONS WITH METAHEURISTICS	2-1-0		
	MET434	PRESSURE VESSEL AND PIPING DESIGN	2-1-0		
В	MET444	COMPUTATIONAL FLUID DYNAMICS	2-1-0	3	3
	MET <mark>454</mark>	INDUSTRIAL TRIBOLOGY	2-1-0		
	MET464	MICRO AND NANO MANUFACTURING	2-1-0	8.4	
	MET474	HEATING AND VENTILATION SYSTEMS	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
	MET 416	COMPOSITE MATERIALS	2-1-0		
	MET 426	ARTIFICIAL INTELLIGENCE AND MACHINE	2-1-0		2
	MET 436	ACOUSTICS AND NOISE CONTROL	2-1-0	3	3
	MET 446	HEAT TRANSFER EQUIPMENT DESIGN	2-1-0		
C	MET 456	ROBOTICS AND AUTOMATION	2-1-0		
	MET 466	TECHNOLOGY MANAGEMENT	2-1-0		
	MET 476	CRYOGENIC ENGINEERING	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET 418	RELIABILITY ENGINEERING	2-1-0		
	MET 428	INDUSTRIAL INTERNET OF THINGS	2-1-0	<u>44</u> 1	
	MET438	FRACTURE MECHANICS	2-1-0		
D	MET 448	GAS TURBINES AND JET PROPULSION	2-1-0	3	3
	MET 458	ADVANCED ENERGY ENGINEERING	2-1-0		
	MET 468	ADDITIVE MANUFACTURING	2-1-0		
	MET 478	POWER PLANT ENGINEERING	2-1-0		

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the syllabus mentioned for comprehensive course work in the sixth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;
 - > Preparing a paper for Conference presentation/Publication in Journals, if possible;

- Preparing a Dissertation in the standard format for being evaluated by the Department;
- > Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30Final evaluation by a three member committee: 40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses.**

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in MECHANICAL ENGINEERING Branch** can opt to study the courses listed below:

S	BASKET I				£.₩1	BASKET II				BASKET III		
e m st er	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	-
S3	MET281	MECHANICS OF MATERIALS	4	4	MET283	FLUID MECHANICS & MACHINERY	4	4	MET285	MATERIAL SCIENCE & TECHNOLOGY	4	4
S4	MET282	THEORY OF MACHINES	4	4	MET284	THERMODYNAMICS	4	4	MET286	MANUFACTURIN G TECHNOLOGY	4	4
S5	MET381	DYNAMICS OF MACHINES	4	4	MET383	THERMAL ENGINEERING	4	4	MET385	MACHINE TOOLS ENGINEERING	4	4
S6	MET382	MACHINE DESIGN	4	4	MET384	HEAT TRANSFER	4	4	MET386	INDUSTRIAL ENGINEERING	4	4
S7	MED481	MINIPROJECT	4	4	MED481	MINIPROJECT	4	4	MED481	MINIPROJECT	4	4
S8	MED482	MINIPROJECT	4	4	MED482	MINIPROJECT	4	4	MED482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all

semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B.Tech Honours in MECHANICAL ENGINEERING can opt to study the courses listed below.

SE ME		GROUP I				GROUP II	Ņ		GROUP III			
STE R	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	R E
S4	MET292	CONTINUUM MECHANICS	4	4	MET294	ADVANCED MECHANICS OF FLUIDS	4	4	MET296	MATERIALS IN MANUFACTURING	4	4
S5	MET393	EXPERIMENT AL STRESS	4	4	MET395	ADVANCED THERMODYNA	4	4	MET397	FLUID POWER	4	4

MECHANICAL ENGINEERING

		ANALYSIS				MICS				AUTOMATION		
S6	MET394	ADVANCED DESIGN SYNTHESIS	4	4	MET396	COMPRESSIBL E FLUID FLOW	4	4	MET398	ADVANCED NUMERICAL CONTROLLED MACHINING	4	4
S7	MET495	ADVANCED THEORY OF VIBRATIONS	4	4	MET497	COMPUTATIO NAL METHODS IN FLUID FLOW & HEAT TRANSFER	4	4	MET499	PRECISION MACHINING	4	4
S8	MED496	MINIPROJEC T	4	4	MED496	MINIPROJECT	4	4	MED496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

CURRICULUM I TO VIII: B. TECH MECHANICAL (AUTOMOBILE) ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50			1		50		
Credits Activity	for		2					2		
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description				
Т	Theory based courses (other the lecture hours, these courses can have tutorial				
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)				
L	Laboratory based courses (where performance is evaluated primarily on the basis				
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)				
N	Non-credit courses				
D	Project based courses (Major, Mini Projects)				
Q	Seminar Courses				

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	SI.No	Department	Course Prefix
	A-111 A-12	INT-	1.7	15 carl 413.41	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
1/2	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
_, _	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
·	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
,	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
_, _	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
1/2	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	- 10	TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	MUT201	FLUID MECHANICS AND MACHINERY	3-1-0	4	4
С	MUT203	AUTO CHASSIS	4-0-0	4	4
D	MET205	METALLURGY AND MATERIAL SCIENCE	3-1-0	4	4
E	EST200	DESIGN & ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	MEL201	COMPUTER AIDED MACHINE DRAWING	0-0-3	3	2
Т	MUL203	FM & HM LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL		26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

 *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND	3-1-0	4	4
	ANT	NUMERICAL METHODS	1 40	No.	
В	MET202	ENGINEERING THERMODYNAMICS	3-1-0	4	4
С	MUT204	AUTO POWER PLANT	3-1-0	4	4
D	MUT206	MECHANICS OF SOLIDS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MUL202	MATERIALS TESTING LAB	0-0-3	3	2
Т	MUL204	VEHICLE SYSTEMS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	TOTAL				

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MUT301	AUTO ELECTRICAL AND	3-1-0	4	4
		ELECTRONICS			
В	AUT303	MANUFACTURING PROCESS	3-1-0	4	4
С	MUT305	VEHICLE DYNAMICS	3-1-0	4	4
D	MUT307	AUTO TRANSMISSION	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	MUL331	PRODUCTION ENGINEERING LAB	0-0-3	3	2
Т	MEL333	THERMAL ENGINEERING LAB-I	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR <mark>/</mark> HONOURS	3-1-0	4*	4
		COURSE	2		
		TOTAL		27/31	23/27

SEMESTER V

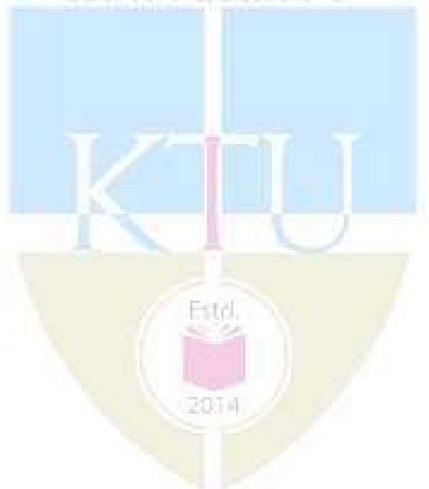
NOTE:

Estd.

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade-in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	AUT302	MECHANICS OF MACHINERY	3-1-0	4	4
В	MUT304	ADVANCED IC ENGINES	3-1-0	4	4
С	MUT306	AUTO COMPONENT DESIGN	3-1-0	4	4
D	MUTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
· · ·	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MUT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED DESIGN & ANALYSIS LAB	0-0-3	3	2
Т	MUL332	ELECTRICAL SYSTEMS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	25/29	23/27


PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MUT312	VEHICLE MAINTENANCE	2-1-0		
	MET312	NON-DESTRUCTIVE TESTING	2-1-0		
	MUT322	VEHICLE BODY ENGINEERING	2-1-0	3	3
D	MUT332	HEATING VENTILATION AND AIR-	2-1-0		
		CONDITIONING			
	MUT342	ELECTRIC VEHICLE TECHNOLOGY	2-1-0		
	MUT362	PRODUCT LIFE CYCLE MANAGEMENT	2-1-0		
	MUT372	NUCLEAR ENGINEERING	2-1-0		

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MUT401	HEAT & MASS TRANSFER	2-1-0	3	3
В	MUTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	MUTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	MUL411	AUTOTRONICS AND VEHICLE TESTING LAB	0-0-3	3	2
Т	MUQ413	SEMINAR	0-0-3	3	2
U	MUD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MUT413	FINITE ELEMENT METHODS	2-1-0		
	MUT423	VEHICLE PERFORMANCE AND TESTING	2-1-0		
В	MUT433	TRACTORS AND FARM EQUIPMENTS	2-1-0	3	3
	MUT443	TOTAL QUALITY MANAGEMENT	2-1-0		
	MET423	OPTIMIZATION TECHNIQUES AND	2-1-0		
		APPLICATIONS			
	MUT463	AUTOMOTIVE TESTING EQUIPMENTS	2-1-0]	
	MUT473	AUTOMOTIVE AERODYNAMICS	2-1-0		
				•	•

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of MECHANICAL (AUTOMOBILE) for students of other undergraduate branches offered in the college under KTU

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MUT415	MODERN AUTOMOTIVE TECHNOLOGY	2-1-0	-	
	MUT425	HYBRID AND ELECTRIC VEHICLES	2-1-0		
	MUT435	AUTOMOTIVE ERGONOMICS AND	2-1-0	3	3
С	1.4.1.272.2	SAFETY			
	MUT445	AVG AND AUTONOMOUS VEHICLES	2-1-0	100	
	MUT455	COMPUTER SIMULATION AND ANALYSIS OF AUTOMOTIVE SYSTEMS	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Mechanical (Automobile) Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

- Survey and study of published literature on the assigned topic;
- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MUT402	HYBRID AND ELECTRIC VEHICLES	2-1-0	3	3
В	MUTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	MUTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	MUTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	MUT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	MUD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
		Edit A			
	MUT414	EMBEDDED SYSTEM IN AUTOMOBILES	2-1-0		
	MET434	PRESSURE VESSEL PIPING DESIGN	2-1-0		
				3	3
В	MUT434	AVG AND AUTONOMOUS VEHICLES	2-1-0		
	MUT444	HUMAN RELATIONS MANAGEMENT	2-1-0		
	MET464	MICRO AND NANO MANUFACTURING	2-1-0		
	MUT464	OFF ROAD VEHICLES	2-1-0	1	
	MUT474	MODERN AUTOMOTIVE TECHNOLOGY	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MUT416	AUTOMOTIVE AIR CONDITIONING	2-1-0		
	MUT426	OPERATIONS RESEARCH	2-1-0		
	MUT436	AUTOMOTIVE MECHATRONICS	2-1-0	3	3
С	MUT446	MARKETING MANAGEMENT	2-1-0		

MECHANICAL (AUTOMOBILE) ENGINEERING

MUT456	THEORY OF VIBRATIONS	2-1-0	
MUT466	AUTOMOTIVE ERGONOMICS AND	2-1-0	
	SAFETY		
MUT476	NVH IN AUTOMOBILES	2-1-0	

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET468	ADDITIVE MANUFACTURING	2-1-0	White they	
	MUT428	METROLOGY AND INSTRUMENTATION	2-1-0		
	MUT438	HYDROGEN FUELLED VEHICLES	2-1-0	3	3
	MUT448	ADVANCED METAL JOINING TECHNIQUES	2-1-0	States and	
D	MUT458	COMPUTER SIMULATION AND ANALYSIS OF AUTOMOTIVE SYSTEMS	2-1-0		
	MUT468	AUTOMOTIVE NAVIGATION AND CONTROLS	2-1-0		
	MUT478	ADVANCED ENERGY ENGINEERING	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.

2014

- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;

: 30

- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75

Guide

Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three member committee: 40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in MECHANICAL AUTOMOBILE ENGINEERING Branch can opt to study the courses listed below:

Property and

	BASKET I						
SEMESTER	COURSE NO.	COURSE NAME	HOURS	CREDIT			
S3	AUT281	FUNDAMENTALS OF AUTOMOBILES ENGINEERING	4	4			
S4	AUT282	AUTOMOTIVE CHASSIS AND ENGINE COMPONENTS	4	4			
S5	AUT381	DYNAMICS OF AUTOMOBILES	4	4			
S6	AUT382	MODERN AUTOMOTIVE TECHNOLOGY	4	4			
S7	MUD481	MINIPROJECT	4	4			
S8	MUD482	MINIPROJECT	4	4			

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

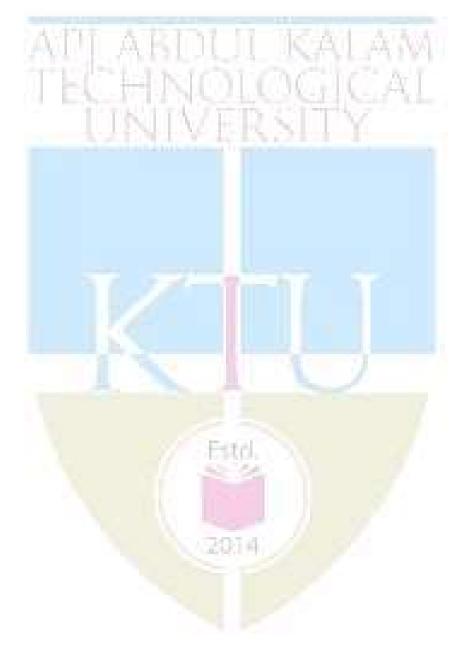
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in MECHANICAL (AUTO)** can opt to study the courses listed below:

SEMESTER	GROUP I						
	Course No.	Course Name	HOURS	CREDIT			
S4	MUT292	INCOMPRESSIBLE AND COMPRESSIBLE FLOWS	4	4			
S5	MUT393	ADVANCED THEORY OF VIBRATIONS	4	4			
S6	MUT394	IC ENGINES AND ADVANCED COMBUSTION STRATEGIES	4	4			
S7	MUT495	SIMULATION AND ANALYSIS OF IC ENGINE PROCESS	4	4			
S8	MUD496	MINIPROJECT	4	4			

Helpinchi I.I.I.


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch mates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.

- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: MECHANICAL PRODUCTION ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	162	
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester-wise credit distribution shall be as below:

Sem		1	2	3	401	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50			-		50		
Credits Activity	for		2					2		
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table 1: Code for the courses

Estel.

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix	
	3 ASPET - A 175	1751	1.7	あるいみい ふうあいお		
01	Aeronautical Engg	AO	16	Information Technology	IT	
02	Applied Electronics &	AE	17	Instrumentation & Control	IC	
03	Automobile	AU	18	Mandatory Courses	MC	
04	Biomedical Engg	BM	19	Mathematics	MA	
05	Biotechnology	BT	20	Mechanical Engg	ME	
06	Chemical Engg	СН	21	Mechatronics	MR	
07	Chemistry	CY	22	Metallurgy	MT	
08	Civil Engg	CE	23	Mechanical (Auto)	MU	
09	Computer Science	CS	24	Mechanical(Prod)	MP	
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB	
11	Electronics & Biomedical	EB	26	Physics	РН	
12	Electronics & Communication	EC	27	Polymer Engg	PO	
13	Food Technology	FT	28	Production Engg	PE	
14	Humanities	HU	29	Robotics and Automation	RA	
15	Industrial Engg	IE	30	Saf <mark>ety & Fire Engg</mark>	FS	

Table 2: Departments and their codes

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В 1/2	PHT 110	ENGINEERING PHYSICSB	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
В 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLYcan choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	MET201	MECHANICS OF SOLIDS	3-1-0	4	4
С	MPT203	FLUID MECHANICS AND MACHINERY	3-1-0	4	4
D	MET205	METALLURGY & MATERIAL SCIENCE	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	MPL201	PRODUCTION ENGINEERING DRAWING	0-0-3	3	2
Т	MEL203			3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL		26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

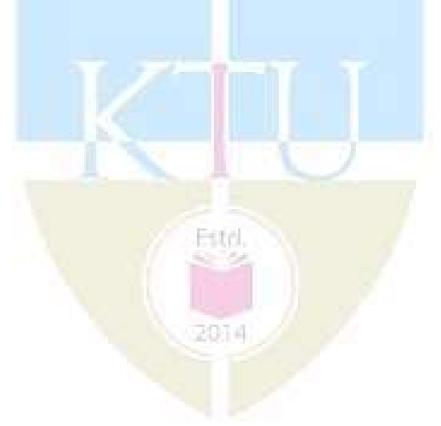
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	MPT202	MECHANICAL TECHNOLOGY	3-1-0	4	4
С	MET204	MANUFACTURING PROCESS	3-1-0	4	4
D	MPT206	MACHINE TOOL TECHNOLOGY	3-1-0	4	4
E	EST200	DESIGN & ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MEL202	FLUID MECHANICS AND HYDRAULIC MACHINES LAB	0-0-3	3	2
Т	MPL204	PRODUCTION TOOLING LAB -I	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	-	TOTAL	5	26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES		COURSE NO. COURSES		COURSE NO. COURSES L-		HOURS	CREDIT
А	MPT301	THEORY OF MACHINES	3-1-0	4	4				
В	MPT303	METROLOGY AND INSTRUMENTATION	3-1-0	4	4				
С	MET305	INDUSTRIAL & SYSTEMS	NDUSTRIAL & SYSTEMS 3-1-0						
D	MPT307	CAD/CAM/CIM	4	4					
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3	3					
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3				
F	MCN301	DISASTER MANAGEMENT	2-0-0	2					
S	MPL331	PRODUCTION TOOLING LAB -II	0-0-3	3	2				
Т	MPL333	PRODUCTION PROCESS LAB	0-0-3	3	2				
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4				
		TOTAL		27/31	23/27				

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.


SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MPT302	ADVANCED MATERIALS AND MANUFACTURING SYSTEMS	4-0-0	4	4
В	MPT304	PRODUCTIONS AND OPERATIONS MANAGEMENT	3-1-0	4	4
С	MPT306	DYNAMICS OF MACHINERY	3-1-0	4	4
D	ΜΡΤΧΧΧ	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MPT308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED AND DESIGN ANALYSIS LAB	0-0-3	3	2
Т	MPL334	PRODUCTION ENGINEERING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	4	25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MPT312	SUPPLY CHAIN AND LOGISTICS MANAGEMENT	2-1-0		
D	MPT322	MPT322 PRECISION ENGINEERING		3	3
	MPT332	MAINTENANCE AND SAFETY ENGINEERING	2-1-0		
	MPT342	THERMODYNAMICS	2-1-0		
	MPT352	OPERATIONS RESEARCH	2-1-0		
	MET312	NON DESTRUCTIVE TESTING	2-1-0		
	MET352	AUTOMOBILE ENGINEERING	2-1-0		

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MPT401	MACHINE DESIGN	2-1-0	3	3
В	ΜΡΤΧΧΧ	PROGRAM ELECTIVE II	2-1-0	3	3
С	MPTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	MPL411	MECHANICAL ENGINEERING LAB	0-0-3	3	2
Т	MPQ413	SEMINAR	0-0-3	3	2
U	MPD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES L-T-P		HOURS	CREDIT
	MPT413	STATISTICS FOR ENGINEERS	2-1-0		
	MPT423	ROBOTICS	2-1-0		
	MPT433	DESIGN OF EXPERIMENTS	2-1-0	3	3
В	MPT443	MARKETING MANAGEMENT	2-1-0		
	MPT453	COMPOSITE MATERIALS AND	2-1-0		
		MECHANICS			
	MET433	FINITE ELEMENT METHOD	2-1-0		
	MET473 AIR CONDITIONING AND		2-1-0		
		REFRIGERATION			

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of MECHANICAL PRODUCTION ENGINEERING for students of other undergraduate branches offered in the college

2021 14

SLOT	COURSE NO.	COURSES L		HOURS	CREDIT
	MPT415	PRODUCT DEVELOPMENT AND DESIGN	2-1-0		
С	MPT435	PLANT ENGINEERING AND MAINTENANCE	2-1-0	3	3
	MPT445	INDUSTRIAL PSYCHOLOGY AND ORGANISATIONAL BEHAVIOUR	2-1-0		
	MET425	QUANTITATIVE TECHNIQUE FOR ENGINEERS	2-1-0	Marine 1	

NOTE:

Presentation

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Mechanical(Production) Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

:40

- Survey and study of published literature on the assigned topic;
- Preparing an Action Plan for conducting the investigation, including team work;

- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
The evaluation committee comprises HOD or a senior facul	lty member, Pr

The evaluation committee comprises HOD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MET402	MECHATRONICS	2-1-0	3	3
В	MPTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	MPTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	ΜΡΤΧΧΧ	PROGRAM ELECTIVE V	2-1-0	3	3
Т	MPT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	MPD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES L-T-P		HOURS	CREDI
					I
	MPT414	MACHINE TOOL DESIGN	2-1-0		
	MPT424	ARTIFICIAL INTELIGENCE IN	2-1-0		
	-	MANUFACTURING		3	3
В	MPT434	ADVANCED OPERATION RESEARCH	2-1-0		
	MPT444	RAPID PROTOTYPING, TOOLING	2-1-0		
		AND MANUFACTURE			
	MPT454	NUCLEAR ENGINEERING	2-1-0		
	MPT464	PROJECT ENGINEERING AND	2-1-0		
		MANAGEMENT			
	MPT474	FACILITIES PLANNING	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MPT416	METAL FORMING TECHNOLOGY	2-1-0		
	MPT426	INDUSTRIAL HYDRAULICS	2-1-0		
	MPT436	LEAN AND AGILE MANUFACTURING	2-1-0	3	3
C	MPT446	HUMAN RESOURCE MANAGEMENT	2-1-0		
	MPT456	TRIBOLOGY	2-1-0		
	MPT466	TOTAL QUALITY MANAGEMENT	2-1-0	1	
	MPT476	ADVANCED METAL CASTING	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MPT418	TOOL ENGINEERING	2-1-0		
	MPT428	NANOTECHNOLOGY	2-1-0		
	MPT438	INDUSTRIAL AUTOMATION	2-1-0	3	3
D	MPT448	BIOMEDICAL ENGINEERING	2-1-0		
	MPT458	CREATIVITY AND PRODUCT	2-1-0	1001	
		ENGINEERING	1.1.1.1	1.11	
	MET458	ADVANCED ENERGY ENGINEERING	2-1-0	H T	
	MET478	POWER PLANT ENGINEERING	2-1-0	Cher .	

PROGRAM ELECTIVE V

NOTE:

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

UNIVERSITY_

- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;

: 30

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75 Guide

Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three member committee : 40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses.**

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in INSPECTION AND QUALITY CONTROL** can opt to study the courses listed below:

	BASKET I: INSPECTION AND QUALITY CONTROL								
SEMESTER	COURSE NO.	COURSE NAME	HOURS	CREDIT					
S3	MPT281	INDUSTRIAL INSPECTION METHODS	4	4					
S4	MPT 282	STATISTICAL PROCESS CONTROL	4	4					
S5	MPT 381	RELIABILITY ENGINEERING AND MANAGEMENT	4	4					
S6	MPT 382	CONTINUOUS IMPROVEMENT TECHNIQUES	4	4					
S7	MPD 481	MINIPROJECT	4	4					
S8	MPD 482	MINIPROJECT	4	4					

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

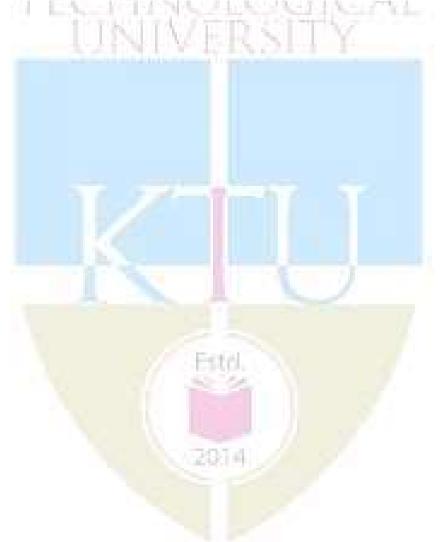
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than

or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in MECHANICAL PRODUCTION ENGINEERING** can opt to study the courses listed below:

				٠
1	۰,	т	I.	۱
L	v	L	L	1


	GROUP I:PRECISION ENGINEERING			RING	GROUP DEVELO	II: SUSTAINABLE PMENT	PRODUC	T
SEM ESTE R	Course No.	Course Name	HOURS	CREDIT	Course No.	Course Name	HOURS	CREDIT
S4	MPT292	PRECISION ENGINEERING	4	4	MPT294	ERGONOMICS	4	4
S5	MPT393	SURFACE ENGINEERING	4	4	MPT395	DESIGN FOR MANUF <mark>AC</mark> TURE	4	4
S6	MPT394	PROCESSING OF NON-METALLIC MATERIALS	4	4	МРТ396	PRODUCT DESIGN AND DEVELOPMENT	4	4
S7	MPT495	DESIGN AND MANUFACTURIN G OF MEMS	4	4	MPT497	SYSTEM DESIGN FOR SUSTAINABILITY	4	4
S8	MPD496	MINIPROJECT	4	4	MPD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch mates and sensions and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH MECHATRONICS

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50	1			1	50		
Credits Activity	for				2					2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description				
Т	Theory based courses (other the lecture hours, these courses can have tutorial				
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)				
L	Laboratory based courses (where performance is evaluated primarily on the basis				
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)				
N	Non-credit courses				
D	Project based courses (Major, Mini Projects)				
Q	Seminar Courses				

Esta.

Table 1: Code for the courses

Course Number is a three-digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course	SI.No	Department	Course
	ATT AB	Prefix		KALAM	Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICSB	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

 Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.

- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	MRT201	ELECTRICAL MACHINES & DRIVES	3-1-0	4	4
С	MRT203	ANALOG AND DIGITAL ELECTRONICS	3-1-0	4	4
D	MRT205	MECHANICS OF SOLIDS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
_/ _	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	MRL201	ELECTRICAL TECHNOLOGY LAB	0-0-3	3	2
Т	MRL203	ANALOG & DIGITAL ELECTRONICS LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	2	26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

10.00

2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	MRT202	THERMODYNAMICS	3-1-0	4	4
С	MRT204	SENSORS AND ACTUATORS	3-1-0	4	4
D	MRT206	MICROPROCESSOR & EMBEDDED SYSTEMS	3-1-0	4	4
Е	EST200	DESIGN & ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MRL202	MECHANICAL ENGINEERING LAB	0-0-3	3	2
Т	MRL204	MICROPROCESSOR & EMBEDDED SYSTEM LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26
					,-•

NOTE:

 Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET301	MECHANICS OF MACHINERY	3-1-0	4	4
В	MRT303	LINEAR CONTROL SYSTEMS	3-1-0	4	4
С	MRT305	PLC & DATA AQUISTION SYSTEMS	3-1-0	4	4
D	MRT307	SOFT COMPUTING TECHNIQUES	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	MRL331	PLC & DATA ACQUISTION LAB	0-0-3	3	2
Т	MRL333	INSRTUMENTATION LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2.
- 3. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MRT302	ROBOTICS & AUTOMATION	3-1-0	4	4
В	MRT304	DIGITAL IMAGE PROCESSING & MACHINE VISION	3-1-0	4	4
С	MRT306	INDUSTRIAL HYDRAULICS & PNEUMATICS	3-1-0	4	4
D	MRTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MRT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	MRL332	MECHATRONIC SYSTEMS LAB	0-0-3	3	2
Т	MRD334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	<u></u>	25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MRT312	OBJECT ORIENTED PROGRAMMING	2-1-0		
	MRT322 BIOMEDICAL INSTRUMENTATION		2-1-0		
	MRT332	POWER ELECTRONICS	2-1-0	3	3
D	MRT342	AUTOMOBILE ENGINEERING	2-1-0		
	MRT352	INDUSTRIAL ENGINEERING	2-1-0		
	MRT362	DESIGN FOR MANUFACTURE	2-1-0		
	MET372	OPERATIONS RESEARCH			

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks

Split up for CIE

Attendance Guide

Guide

Project Report

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

:10

:15

:10

123.14

SEMESTER VII

SLOT	COURSE	COURSES	COURSES L-T-P H			
	NO.					
А	MRT401	ADVANCED AUTOMATION SYSTEMS	2-1-0	3	3	
В	MRTXXX	PROGRAM ELECTIVE II	2-1-0	3	3	
С	MRTXXX	OPEN ELECTIVE	2-1-0	3	3	
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3		
S	MRL411	CAD LAB	0-0-3	3	2	
Т	MRQ413	SEMINAR	0-0-3	3		
U	MRD415	PROJECT PHASE I	0-0-6	6	2	
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4	
TOTAL				24/28	15/19	

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MRT413	NETWORK AND DATA SECURITY	2-1-0		
	MRT423	MICRO ELECTRO MECHANICAL	2-1-0		3
В		SYSTEMS		3	
	MRT433	RENEWABLE ENERGY	2-1-0		
	MRT443	MANUFACTURING TECHNOLOGY	2-1-0		
	MRT453	ENTREPRENEURSHIP	2-1-0		
	MRT463	FLUID MECHANICS & MACHINERY	2-1-0		
	MRT473	MAINTENANCE ENGINEERING	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example, the courses listed below are offered by the Department of MECHATRONICS ENGINEERING for students of other undergraduate branches offered in the college under KTU

Estel.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
С	MRT 415	BASICS OF ROBOTICS & AUTOMATION	2-1-0	3	3
	MRT 425	AUTOMATION SYSTEMS	2-1-0		

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes' duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50

Attendance	: 10
Guide	: 20
Technical Content of the Report	: 30
Presentation	: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Mechatronics either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;
 - Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - Preparing a Written Report on the Study conducted for presentation to the Department;
 - > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30

The report evaluated by the evaluation committee : 20

The evaluation committee comprises HOD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MRT402	AUTOTRONICS	2-1-0	3	3
В	MRTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
C	MRTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	MRTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	MRT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	MRD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		COURSE			
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MRT414	IOT & APPLICATIONS	2-1-0		
	MRT424	COMMUNICATION ENGINEERING	2-1-0		
	MRT434	SPECIAL ELECTRICAL MACHINES	2-1-0	3	3
В		AND APPLICATIONS			
	MRT444	METALLURGY & MATERIALS	2-1-0		
ENGINEE		ENGINEERING			
	MRT454	STATISTICAL QUALITY CONTROL	2-1-0		
	MRT464	HYBRID AND ELECTRIC VEHICLES	2-1-0		
	MRT474	OPERATIONS MANAGEMENT	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MRT416	ADVANCED MICROPROCESSORS AND MICROCONTROLLERS	2-1-0		
	MRT426	NANO-ELECTRONICS	2-1-0	3	3
С	MRT436	NON LINEAR SYSTEMS AND	2-1-0		
	COULD I	CONTROL	11 3	176911	
	MRT446	DYNAMICS OF MACHINERY	2-1-0	1.1.1	
	MRT456	ERGONOMICS	2-1-0	20 T	
	MRT466	ENERGY MANAGEMENT AND	2-1-0	Children .	
		AUDITING	N/		
	MRT476	SIX SIGMA	2-1-0		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MRT418	WIRELESS AND SENSOR NETWORKS	2-1-0		
	MRT428	BIO-MECHATRONICS	2-1-0		
	MRT438	INDUSTRIAL INSTRUMENTATION	2-1-0	3	3
D	MRT448	HEAT & MASS TRANSFER	2- <mark>1-</mark> 0		
	MRT458	SUPPLY CHAIN MANAGEMENT	2-1-0		
	MRT468	OPTIMIZATION TECHNIQUES	2-1-0		
	MRT478	ARTIFICIAL INTELLIGENCE	2-1-0		

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

Edited.

- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three-member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully

theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- In depth study of the topic assigned in the light of the Report prepared under Phasel;
- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three-member committee: 40(The final evaluation committee comprises Project coordinator, expert fromIndustry/research Institute and a senior faculty from a sister department. The samecommittee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more

MECHATRONICS

foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a miniproject based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8.Students who have registered **for B.Tech Minor in MECHATRONICS** can opt to study the courses listed below:

		BASKET I	BASKET II					
Semes ter	Course No.	Course Name	HOURS	CREDIT	Course No.	Course Name	HOURS	CREDIT
S3	MRT 281	INTRODUCTION TO SENSORS AND ACTUATORS	4	4		INTRODUCTION TO SENSORS AND ACTUATORS	4	4
S4	MRT 282	FUNDAMENTALS OF ANALOG AND DIGITAL ELECTRONICS	4	4	10W	BASICS OF INDUSTRIAL HYDRAULICS & PNEUMATICS	4	4
S5	MRT 381	EMBEDDED SYSTEMS	4	4	The second second	DATA AQUISTION & PLC SYSTEMS	4	4
S6	MRT 382	INTRODUCTION TO ROBOTICS & AUTOMATION	4	4		ADVANCED AUTOMATION SYSTEMS	4	4
S7	MRD 481	MINIPROJECT	4	4	MRD 481	MINIPROJECT	4	4
S8	MRD 482	MINIPROJECT	4	4	MRD 482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

(i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.

- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all-academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8.Students who have registered for **B.Tech Honours in MECHATRONICS** can opt to study the courses listed below:

	GROUP I			IJ	4.1.2.1	GROUP II		
Semester	Course No	Course Name	HOURS	CREDIT	Course No	Course Name	HOURS	CREDIT
S4		MICRO MECHATRONIC SYSTEMS	4	4	MRT294	INDUSTRIAL AUTOMATION	4	4
S5		DRIVES & CONTROL SYSTEM FOR AUTOMATION	4	4		ADVANCED CONTROL SYSTEMS	4	4
S6		ARTIFICIAL INTELLIGENCE & EXPERT SYSTEM IN AUTOMATION	4	4		ADVANCED COMPUTER CONCEPT FOR AUTOMATION	4	4
S7		ADVANCED APPLICATIONS OF MECHATRONICS	4	4	_	CNC MACHINE SYSTEMS DESIGN	4	4
S8	MRD 496	MINIPROJECT	4	4	MRD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks' induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch mates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.TECH METALLURGICAL AND MATERIALS ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses		8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Non-credit (P/F)Courses Mandatory with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

Estel.

No semestershallhave more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester- wise credit distribution shall be as below:

Sem		1	2	3	401	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50			- /		50		
Credits Activity	for				2					2
G.Total										162

METALLURGICAL AND MATERIALS ENGINEERING

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

-2510.1

Table 1: Code for the courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Table 2: Departments and their codes

Sl.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgical & Materials Engineering	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

METALLURGICAL AND MATERIALS ENGINEERING

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICSB	3-1-0	4	4
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Ε	HUT101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

METALLURGICAL AND MATERIALS ENGINEERING

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
		EQUATIONS AND TRANSFORMS			
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METALLURGICAL & MATERIALS ENGINEERING, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	MTT201	METALLURGICAL THERMODYNAMICS AND KINETICS	3-1-0	4	4
С	MTT203	PHYSICAL METALLURGY	3-1-0	4	4
D	MTT205	MINERAL BENEFICIATION	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	MTL201	MINERAL DRESSING LAB	0-0-3	3	2
Т	MTL203	METALLOGRAPHY LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	1	26/30	22/26

NOTE:

Estel.

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND	3-1-0	4	4
	ARTE	NUMERICAL METHODS	1.40	hick in	
В	MTT202	HEAT TREATMENT OF MATERIALS	3-1-0	4	4
С	MTT204	TRANSPORT PHENOMENA	3-1-0	4	4
D	MTT206	MECHANICAL BEHAVIOR OF	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MTL202		0-0-3	3	2
Т	MTL204	MATERIALS TESTING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

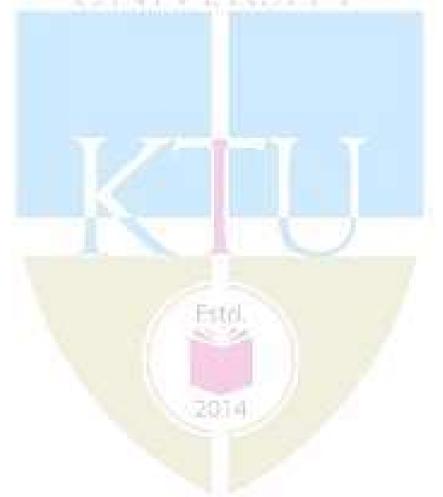
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MTT301	IRON AND STEEL MAKING	3-1-0	4	4
В	MTT303	NON FERROUS EXTRACTION OF METALS	3-1-0	4	4
С	MTT305	FOUNDRY TECHNOLOGY	3-1-0	4	4
D	MTT307	MATERIALS JOINING TECHNOLOGY	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	MTL331	FOUNDRY LAB	0-0-3	3	2
Т	MTL333	MATERIALS JOINING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MTT302	CORROSION ENGINEERING	3-1-0	4	4
В	MTT304	DEFORMATION PROCESSING	3-1-0	4	4
C	MTT306	MATERIALS CHARACTERIZATION	3-1-0	4	4
D	MTTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
_,	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MTT308		1-0-0	1	1
S	MTL332	CORROSION ENGINEERING LAB	0-0-3	3	2
т	MTL334	SOFTWARE LAB	0-0-3	3	2
R/M/ H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
I		TOTAL		25/29	23/27


PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MTT312	DESIGN AND SELECTION OF MATERIALS	2-1-0		
	MTT322	AUTOMOTIVE MATERIALS	2-1-0		
D	MTT332	MECHANICAL TECHNOLOGY	2-1-0	3	3
	MTT342	ELECTRICAL, ELECTRONIC, OPTICAL AND MAGNETIC MATERIALS	2-1-0		
	MTT352	MEASUREMENTS AND CONTROL	2-1-0		
	MTT362	NANO-MATERIALS AND APPLICATIONS	2-1-0		
	MTT372	ENERGY MATERIALS AND TECHNOLOGY	2-1-0		

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BOS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MTT401	NON-DESTRUCTING TESTING	2-1-0	3	3
В	ΜΤΤΧΧΧ	PROGRAM ELECTIVE II	2-1-0	3	3
С	MTTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	MTL411	NON DESTRUCTIVE TESTING LAB	0-0-3	3	2
т	MTQ413	SEMINAR	0-0-3	3	2
U	MTD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	5	TOTAL	-	24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MTT413	POWDER METALLURGY	2-1-0		
	MTT423	NUCLEAR METALLURGY	2-1-0		
	MTT433	ELECTRICALENGINEERING	2-1-0		
В		MATERIALS		3	3
	MTT443	SEMICONDUCTOR MATERIALS	2-1-0		
		AND DEVICES			
	MTT453	EMERGING MATERIALS	2-1-0		
	MTT463	METALLURGY OF TOOL MATERIALS	2-1-0		
	MTT473	MATERIALS FOR EXTREME ENVIRONMENTS	2-1-0		

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by **the Department of METALLURGICAL AND MATERIALS ENGINEERING for students of other undergraduate branches offered in the college under KTU.**

METALLURGICAL AND MATERIALS ENGINEERING

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT				
	MTT 415	INTRODUCTION TO QUALITY	2-1-0						
		MANAGEMENT							
	MTT 425	NON DESTRUCTIVE TESTING AND	2-1-0	3	3				
с		FAILURE ANALYSIS			•				
	MTT 435	PHYSICS OF MATERIALS	2-1-0						
	MTT 445	FUNDAMENTALS OF NANO	2-1-0	Chick I					
	100 A	MATERIALS	1.50	1.02					

CHNOLOG

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Metallurgical and Materials Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;

- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

a service of the

Total marks: 100, only CIE, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

1.00

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MTT402	CERAMICS, POLYMERS AND COMPOSITE MATERIALS	2-1-0	3	3
В	MTTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	ΜΤΤΧΧΧ	PROGRAM ELECTIVE IV	2-1-0	3	3
D	ΜΤΤΧΧΧ	PROGRAM ELECTIVE V	2-1-0	3	3
Т	MTT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	MTD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COUR <mark>S</mark> ES	L-T-P	HOURS	CREDIT
	MTT414	METALLURGICAL FAILURE ANALYSIS	2-1-0		
	MTT424	FATIGUE, CREEP AND FRACTURE	2-1-0		
	MTT434	SPECIAL CASTING TECHNIQUES	2-1-0	3	3
В	MT <mark>T444</mark>	LADLE METALLURGY AND	2-1-0		
		CONTINUOUS CASTING OF STEELS			
	MTT4 <mark>54</mark>	ALLOY DEVELOPMENT	2-1-0		
	MTT464	HIGH TEMPERATURE MATERIALS	2-1-0		
	MTT474	SURFACE ENGINEERING	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MTT416	NON FERROUS PHYSICAL METALLURGY	2-1-0		
	MTT426	PARTICULATE PROCESSING	2-1-0		
	MTT436	SMART MATERIALS	2-1-0	3	3
С	MTT446	BIO-MATERIALS	2-1-0		
	MTT456	MANUFACTURING METHODS	2-1-0		
	MTT466	FRACTURE MECHANICS	2-1-0	1	
	MTT476	FUELS, FURNACES AND REFRACTORIES	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MTT418	NON TRADITIONAL MACHINING	2-1-0		
	MTT428	NON METALLIC MATERIALS	2-1-0		
	MTT438	COMPUTATIONAL MATERIALS	2-1-0	3	3
D		SCIENCE			
	MTT448	ADVANCES IN METAL FORMING	2-1-0	W11	
	MTT458	CERAMICS AND GLASSES	2-1-0		
	MTT468	RUBBER AND TYRE TECHNOLOGY	2-1-0		
	MTT478	PROCESS MODELLING AND APPLICATIONS	2-1-0	C. Berry	

PROGRAM ELECTIVE V

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;

- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75 Guide : 30 Interim evaluation, 2 times in the semester by the evaluation committee : 50 Quality of the report evaluated by the above committee : 30 (The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor). Final evaluation by a three member committee : 40 (The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**. (ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a miniproject based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi)The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8.Students who have registered **for B.Tech Minor in METALLURGICAL AND MATERIALS ENGINEERING** can opt to study the courses listed below:

S e	M	ATERIALS SCIENCE			METALL	URGICAL ENGINEER	INC	3	INDU	STRIAL METALLU	RG۱	Y
m es te r	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S3	MTT281	PRINCIPLES OF PHYSICAL METALLURGY	4	4	MTT283	BASICS OF METALLURGICAL ENGINEERING	4	4	MTT285	MATERIAL SELECTION FOR INDUSTRIAL APPLICATIONS	4	4
S4	MTT282	METALLURGICAL HEAT TREATMENT	4	4	MTT284	ENGINEERING MATERIALS	4	4	MTT286	MECHANICAL METALLURGY	4	4
S5	MTT381	COMPOSITE MATERIALS	4	4	MTT383	INTRODUCTION TO FOUNDRY TECHNOLOGY	4	4	MTT385	WELDING METALLURGY	4	4
S6	MTT382	TESTING AND EVALUATION OF MATERIALS	4	4	MTT384	NON DESTRUCTIVE EVALUATION	4	4	MTT386	INTRODUCTION TO MATERIALS CHARACTERIZAT ION	4	4

METALLURGICAL AND MATERIALS ENGINEERING

S7	MTD481	MINIPROJECT	4	4	MTD481	MINIPROJECT	4	4	MTD481	MINIPROJECT	4	4
S8	MTD482	MINIPROJECT	4	4	MTD482	MINIPROJECT	4	4	MTD482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in Metallurgical and Materials Engineering with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

Estel.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.

- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.

- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8.Students who have registered for **B.Tech Honours in METALLURGICAL AND MATERIALS ENGINEERING** can opt to study the courses listed below:

S E M		Group-I		-		Group-II				Group-III		
E S T E R	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S 4	MTT292	ADVANCED THERMODYNA MICS OF MATERIALS	4	4	MTT294	ALLOY DESIGN AND DEVELOPMENT	4	4	MTT296	RECENT DEVELOPMENTS IN WELDING PROCESSES	4	4
S 5	MTT393	PHASE TRANSFORMATI ONS	4	4	MTT395	ECONOMICS OF METAL PRODUCTION PROCESSES	4	4	MTT397	RECENT TRENDS IN NANO MATERIALS	4	4
S 6	MTT394	CRYSTALLOGRA PHY	4	4	MTT396	RECENT TRENDS IN METAL FORMING PROCESSES	4	4	MTT398	ADVANCED CHARACTERIZATION TECHNIQUES	4	4
S 7	MTT495	EXPERIMENTAL TECHNIQUES IN MATERIALS SCIENCE	4	4	MTT497	AEROSPACE MATERIALS	4	4	MTT499	ADVANCED SOLIDIFICATION PROCESSING	4	4
S 8	MTD496	MINIPROJECT	4	4	MTD496	MINIPROJECT	4		MTD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: NAVAL ARCHITECTURE AND SHIP BUILDING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points		50	X			1	50		
Credits for Activity				2	1				2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Couc	
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
Ν	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department	Course Prefix	SI.No	Department	Course Prefix	
	ATT AB	101	1	KALAM		
01	Aeronautical Engg	AO	16	Information Technology	IT	
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC	
03	Automobile	AU	18	Mandatory Courses	MC	
04	Biomedical Engg	BM	19	Mathematics	MA	
05	Biotechnology	BT	20	Mechanical Engg	ME	
06	Chemical Engg	СН	21	Mechatronics	MR	
07	Chemistry	СҮ	22	Metallurgy	MT	
08	Civil Engg	CE	23	Mechanical (Auto)	MU	
09	Computer Science	CS	24	Mechanical(Prod)	MP	
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB	
11	Electronics & Biomedical	EB	26	Physics	PH	
12	Electronics & Communication	EC	27	Polymer Engg	РО	
13	Food Technology	FT	28	Production Engg	PE	
14	Humanities	HU	29	Robotics and Automation	RA	
15	Industrial Engg	IE	30	Safety & Fire Engg	FS	

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDI T
А	MAT 101	LINERA ALGEBRA AND CALCULUS	3-1-0	4	4
	2.658	15 A 375 TO 1 10	Control -	A Starte	
В 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	-4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	
S PHL 120 1/2		ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
ESL 130		ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

2014

 Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.

- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERNTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	SBT 201	INTRODUCTION TO NAVAL ARCHITECTURE	3-1-0	4	4
С	SBT 203	MECHANICS OF SOLIDS	3-1-0	4	4
D	SBT 205	MECHANICS OF FLUIDS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	SBL 201	MECHANICS OF FLUIDS LAB	0-0-3	3	2
Т	SBL 203	WELDING AND MACHINE TOOLS LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	2	26/30	22/26

SEMESTER III

NOTE:

Estd.

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	SBT202	RESISTANCE AND PROPULSION OF SHIPS	3-1-0	4	4
С	SBT204	STABILITY OF SHIPS AND SUBMARINES	3-1-0	4	4
D	SBT206	ANALYSIS OF STRUCTURES	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	SBL202	SHIP DESIGN LAB	0-0-3	3	2
Т	SBL204	MEASUREMENTS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

NOTE:

Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estel

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	SBT301	SHIP DYNAMICS	3-1-0	4	4
В	SBT303	STRUCTURAL DESIGN OF SHIPS	3-1-0	4	4
С	SBT305	STRENGTH OF SHIPS – I	3-1-0	4	4
D	SBT307	ELECTRICAL TECHNOLOGY AND INSTRUMENTATION	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	SBL331	STRENGTH OF MATERIALS LAB	0-0-3	3	2
Т	SBL333	MARINE HYDRODYNAMICS AND HYDRAULIC MACHINERIES LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

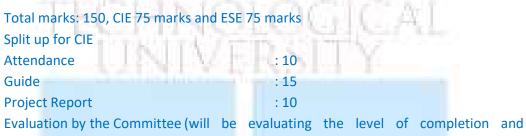
NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	SBT302	SHIP DESIGN – I	3-1-0	4	4
В	SBT304	STRENGTH OF SHIPS - II	3-1-0	4	4
С	SBT306	MARINE ENGINEERING	3-1-0	4	4
D	SBTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
-	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	SBT308		1-0-0	1	1
S	SBL332	CAD/ CAM LAB	0-0-3	3	2
Т	SBL334	ELECTRICAL ENGINEERING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I


SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	SBT312	MATERIAL SCIENCE	2-1-0		
	SBT322	MARINE POLLUTION, CONTROL AND	2-1-0		
D		RECOVERY SYSTEMS		3	3
	SBT332	APPLIED THERMODYNAMICS	2-1-0]	
	SBT342	INLAND WATER TRANSPORTATION	2-1-0		

NOTE:

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

NAVAL ARCHITECTURE AND SHIP BUILDING

3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	SBT401	SHIP DESIGN - II	2-1-0	3	3
В	SBTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	SBTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	SBL411	MARINE ENGINEERING LAB	0-0-3	3	2
Т	SBQ413	SEMINAR	0-0-3	3	2
U	SBD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	SBT413	SHIPBUILDING MATERIALS, CORROSION PREVENTION AND PROTECTION	2-1-0	3	3
С	SB 423	SHIP RECYCLING	2-1-0		
	SBT433	DESIGN OF FISHING VESSELS	2-1-0		
	SBT443	SHIP PRODUCTION	2-1-0		

(20019) J

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example The courses listed below are offered by the Department of NAVAL ARCHITECTURE & SHIP BUILDING for students of other undergraduate branches offered in the college under KTU

NAVAL ARCHITECTURE AND SHIP BUILDING

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	SBT 415	DREDGERS AND HARBOUR CRAFTS	2-1-0		
C	SBT 425	SHIPBUILDING TECHNOLOGY	2-1-0		
	SBT 435	MARINE MATERIALS AND	2-1-0	3	3
		CORROSION			

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimu	um required to pass 50	
Attendance	: 10	
Guide	: 20	
Technical Content of the Report	F: 30 I	
Presentation	: 40	

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Naval Architecture and ship building, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;

- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;

Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	SBT402	OFFSHORE STRUCTURES	2-1-0	3	3
В	SBTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	SBTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	SBTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	SBT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	SBD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
TOTAL			25/29	17/21	

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	SBT414	JOINING TECHNIQUES IN SHIPBUILDING TECHNOLOGY	2-1-0		
	SBT424	SHIP PRODUCTION MANAGEMENT	2-1-0	3	3
В	SBT43 <mark>4</mark>	SUBMARINE AND SUBMERSIBLES	2-1-0		
	SBT444	ELECTRICAL SYSTEMS IN SHIPS AND	2-1-0		
		SHIPYARDS			

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	SBT416	SHIP SURVEY ESTIMATION AND	2-1-0		
с	SBT426	REFRIGERATION AND AIR CONDITIONING OF SHIPS	2-1-0	3	3
	SBT436	MARITIME LAW	2-1-0	-	
	SBT446	DESIGN OF MACHINE ELEMENTS	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	SBT418	EXPERIMENTAL TECHNIQUES ON	2-1-0		
		SHIPS AND MODELS			
	SBT428	OCEAN WAVE HYDRODYNAMICS	2-1-0	3	3
D	SBT438	COMPUTER AIDED DESIGN AND	2-1-0		
	1001	COMPUTER AIDED MANUFACTURING	<u> 311 - 6</u>	11 1001	
	SBT448	FINITE ELEMENT METHOD	2-1-0		

PROGRAM ELECTIVE V

NOTE

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.

EL HINDLOOLOA

- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;

- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three member committee

: 40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot

be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses.**

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum, of which one course shall be a mini project based on the chosen area. They can do miniproject on the chosen area in S7 or S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in NAVAL ARCHITECTURE & SHIP BUILDING Branch can opt to study the courses listed below:

	Basket I							
Semester	COURSE NO.	Course Name	Hours	Credit				
S3	SBT 281	FUNDAMENTAL CONCEPTS IN NAVAL ARCHITECTURE	4	4				
S4	SBT 282	STABILITY OF SHIPS	4	4				
S5	SBT 381	RESISTANCE OF SHIPS	4	4				
S6	SBT 382	PROPULSION OF SHIPS	4	4				
S7	SBD 481	MINI PROJECT -1	4	4				
S8	SBD 482	MINI PROJECT -2	4	4				

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than

or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in NAVAL ARCHITECTURE & SHIP BUILDING** can opt to study the courses listed below:

Group I						
Semester	COURSE NO.	Course Name	Hours	Credit		
S4	SBT292	ADVANCED PROPELLER DESIGN OF SHIPS	4	4		
S5	SBT393	ADVANCED SHIP STABILITY AND DYNAMICS CALCULATIONS	4	4		
S6	SBT394	DYNAMIC ANALYSIS OF SHIP STRUCTURES	4	4		
S7	SBT495	ECONOMICS IN SHIP DESIGN	4	4		
S8	SBD496	MINI PROJECT	4	4		


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.

- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH POLYMER ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50	1			1	50		
Credits Activity	for		2						2	
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table 1: Code	for the	courses
---------------	---------	---------

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	il.No Department		SI.No	Department	Course Prefix
	A. 175 A. 175	1752	1.1	And the Arthresh	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT_	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safe <mark>ty & Fire Engg</mark>	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В 1/2	PHT 110	ENGINEERING PHYSICSB	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

£

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D EST 120 1/2		BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLYcan choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS	3-1-0	4	4
В	CHT201	CHEMISTRY FOR PROCESS ENGINEERING	3-1-0	4	4
С	POT201	POLYMERS & POLYMERISATION PRINCIPLES	3-1-0	4	4
D	POT203	POLYMER SCIENCE	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	POL201	CHEMISTRY LAB	0-0-3	3	2
Т	POL203	COMPUTER AIDED DRAFTING LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	7	26/30	22/26

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
	24-14	A 121 11 10 10 10	1		
В	CHT202	CHEMICAL ENGINEERING THERMODYNAMICS	3-1-0	4	4
С	POT202	POLYMER PHYSICS	3-1-0	4	4
D	POT204	LATEX TECHNOLOGY	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	POL202	SPECIFICATION TEST LAB	0-0-3	3	2
Т	POL204	POLYMER PREPARATION AND ANALYSIS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL	-	26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	POT301	PLASTIC MATERIALS	3-1-0	4	4
В	POT303	FLUID MECHANICS	3-1-0	4	4
С	POT305	RUBBERS – SCIENCE AND TECHNOLOGY	3-1-0	4	4
D	POT307	POLYMER PROCESSING	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	POL331	FLUID MECHANICS LAB	0-0-3	3	2
Т	POL333	LATEX PRODUCTS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	27/31	23/27

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

Estd.

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	POT302	POLYMER MACHINERY AND PRODUCT MANUFACTURING	3-1-0	4	4
В	POT304	TYRE TECHNOLOGY	3-1-0	4	4
С	POT306	PAINTS AND SURFACE COATINGS	3-1-0	4	4
D	ΡΟΤΧΧΧ	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	POT308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	POL332	PRODUCT MANUFACTURING LAB	0-0-3	3	2
Т	POD334	MINI PROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	POT <mark>312</mark>	HEAT AND MASS TRANSFER	2-1-0		
	POT322	ENERGY ENGINEERING	2-1-0		
	POT332	INDUSTRIAL BIOTECHNOLOGY	2-1-0	3	3
D	POT342	MATERIAL SCIENCE AND ENGINEERING	2-1-0		
	POT352	OPERATIONS RESEARCH	2-1-0		
	POT362	AIR POLLUTION CONTROL	2-1-0		
	POT372	CATALYST SCIENCE AND CATALYTIC	2-1-0	1	
		PROCESSES			

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

POLYMER ENGINEERING

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks

Split up for CIE

Attendance

Guide

Project Report

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

:10

:15

:10

123.14

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	POT401	POLYMER TESTING	2-1-0	3	3
В	ΡΟΤΧΧΧ	PROGRAM ELECTIVE II	2-1-0	3	3
С	ΡΟΤΧΧΧ	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	POL411	POLYMER TESTING LAB	0-0-3	3	2
Т	POQ413	SEMINAR	0-0-3	3	2
U	POD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	POT413	ENGINEERING STATISTICS AND QUALITY	2-1-0		
	POT423	OIL AND NATURAL GAS ENGINEERING	2-1-0	3	3
В	PO <mark>T433</mark>	PROCESS MODELLING AND	2-1-0		
		SIMULATION			
	POT443	CORROSION ENGINEERING	2-1-0		
	POT453	PROJECT ENGINEERING	2-1-0		
	POT463	COMPUTER AIDED DESIGN AND	2-1-0		
		MANUFACTURE			
	POT473	BIO REACTOR DESIGN	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes

duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50

Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Polymer Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;
 - Working out a preliminary Approach to the Problem relating to the assigned topic;
 - Block level design documentation
 - Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
 - Preparing a Written Report on the Study conducted for presentation to the Department;

> Final Seminar, as oral Presentation before a departmental committee.

Total marks: 100, only CIE, minimum required to pass 5	50
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
The evaluation committee comprises HoD or a ser	nior faculty member, Project

coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	POT402	POLYMER PRODUCTS - DESIGN AND TESTING	2-1-0	3	3
В	ΡΟΤΧΧΧ	PROGRAM ELECTIVE III	2-1-0	3	3
C	ΡΟΤΧΧΧ	PROGRAM ELECTIVE IV	2-1-0	3	3
D	ΡΟΤΧΧΧ	PROGRAM ELECTIVE V	2-1-0	3	3
Т	POT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	POD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	POT414	FIBRE TECHNOLOGY	2-1-0		
	POT424	PETROLEUM REFINERY ENGINEERING	2-1-0		
	POT434	ADDITIVE MANUFACTURING	2-1-0	3	3
В	POT444	POLYMER NAN COMPOSITES	2-1-0		
	POT454	FAILURE ANALYSIS OF POLYMERS	2-1-0		
	POT464	ENVIRONMENTAL IMPACT ANALYSIS	2-1-0		
	POT <mark>474</mark>	ELECTROCHEMICAL ENGINEERING	2-1-0		
ROGRAM ELECTIVE IV					

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	POT416	SPECIALITY POLYMERS	2-1-0		
	POT426	POLYMERS FOR ELECTRONIC	2-1-0		
		APPLICATIONS		3	3
C	POT436	POLYMERS FOR SPACE APPLICATIONS	2-1-0]	
	POT446	COMPOSITE MATERIALS	2-1-0		
	POT456	LIQUID CRYSTAL POLYMERS	2-1-0		
	POT466	PLASTICS PACKAGING TECHNOLOGY	2-1-0]	
	POT476	MODERN METHODS OF	2-1-0]	
		INSTRUMENTATION			

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	POT418	POLYMERS AND ENVIRONMENT	2-1-0		
	POT418	BIOMEDICAL AND BIOPOLYMERS	2-1-0	_	
	POT438	ADHESIVE SCIENCE AND	2-1-0	3	3
D		TECHNOLOGY			
	POT448	POLYMER BLENDS AND COMPOSITES	2-1-0	100	
	POT458	SAFETY ENGINEERING OF PROCESS PLANTS	2-1-0		
	POT468	POLYMERS AND SEPARATION PROCESS	2-1-0	S. Aug	
	POT478	POLYMERS AND FUEL CELL TECHNOLOGY	2-1-0		

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;

- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Projectcoordinator and project supervisor).Final evaluation by a three member committee: 40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be

exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through course listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in Polymer Engineering Branch** can opt to study the courses listed below:

		GROUP I			٩.	GROUP II				GROUP III		
Se me ste r	Cour se No	Course Name	H O U R S	R E D	Cou rse No	Course Name	H O U R S	C R E D I T	Cou rse No	Course Name	H O U R S	R E D
S4	POT 292	Fundamentals of Manufacturing	4	4	POT 294	Energy Technology	4	4	POT 296	Polymers in Construction	4	4
S5	POT 393	Mould and Die Design	4	4	POT 395	Conducting Polymers	4	4	POT 397	Processing of Paints	4	4

POLYMER ENGINEERING

S6	POT	Advanced	4	4	POT	Polymers &	4	4	POT	Plastics & Decoration	4	4
	394	Mould			396	Photovoltaic			398			
		Manufacturing				Technology						
S7	POT	Advanced	4	4	POT	Advanced Polymer	4	4	POT	Technology of Printing	4	4
	495	Product Design			497	Electronics			499	Inks		
S 8	POD	MINIPROJECT	4	4	POD	MINIPROJECT	4		PO	MINIPROJECT	4	4
	496				496				D49			
									6			

DUIKALA

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: PRODUCTION ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points		50 50							
Credits for Activity	2							2	
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table	1:	Code	for t	the	courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl.No	Department Course SI.No Departm Prefix		Department	Course Prefix	
	ASPAR ASP	175.7		あるいれい 人であいたい	
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	СҮ	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	РО
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICSB	3-1-0	4	4
_, _	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
1/2 D	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
,	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering PhysicsB in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLYcan choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	PET201	MECHANICS OF SOLIDS	3-1-0	4	4
С	PET203	FLUID MECHANICS AND MACHINERY	3-1-0	4	4
D	PET205	METALLURGY AND MATERIAL SCIENCE	3-1-0	4	4
E1/2	EST200	DESIGN& ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	-
S	PEL201	MATERIAL TESTING LAB	0-0-3	3	2
Т	PEL203	COMPUTER AIDED MACHINE DRAWING	0-0-3	3	2
R/M	VAC	REMEDIAL/ MINOR COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	EET212	ELECTRICAL DRIVES AND AUTOMATION	3-1-0	4	4
С	PET204	THERMODYNAMICS AND HEAT TRANSFER	3-1-0	4	4
D	PET206	MECHANISM AND MACHINES THEORY	3-1-0	4	4
E1/2	EST200	DESIGN& ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	-
S	EEL212	ELECTRICAL AND ELECTRONICS LAB	0-0-3	3	2
Т	PEL204	MECHANICAL ENGINEERING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/ MINOR COURSE/HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

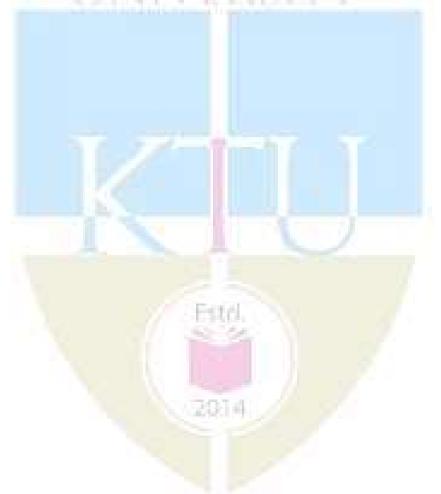
SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	PET301	DESIGN OF MACHINE ELEMENTS	3-1-0	4	4
В	PET303	CAD/CAM/CIM	3-1-0	4	4
С	PET305	PRODUCTION PROCESSES	3-1-0	4	4
D	PET307	MACHINE TOOL TECHNOLOGY AND TOOL ENGINEERING	3-1-0	4	4
E1/2	HUT300	INDUSTRIAL ECONOMICS& FOREIGN TRADE	3-0-0	3	3
-	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	-
S	PEL331	COMPUTER AIDED DESIGN AND ANALYSIS LAB	0-0-3	3	2
Т	PEL333	MACHINE TOOL LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/ MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	PET302	PLASTICITY AND METAL FORMING	3-1-0	4	4
В	PET304	METROLOGY AND INSTRUMENTATION	3-1-0	4	4
С	PET306	INDUSTRIAL ROBOTICS	3-1-0	4	4
D	PETXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS& FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	PET308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	PEL332	MANUFACTURING PROCESS AND SIMULATION LAB	0-0-3	3	2
Т	PEL334	METROLOGY LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/ MINOR/HONOURS COURSE	3-1-0	4**	4
		TOTAL		25/29	23/27


PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	PET312	ADVANCED PRODUCTION PROCESS	2-1-0		
	PET322	MECHATRONICS	2-1-0		
D	PET332	PROJECT MANAGEMENT	2-1-0	3	3
	PET342	FEM	2-1-0		
	PET352	COMPOSITES	2-1-0		
	PET362	DECISION MODELLING	2-1-0		
	PET372	ENERGY TECHNOLOGIES	2-1-0]	

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- 2. **All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 2 to 4 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted online by the University. Syllabus for comprehensive examination shall be prepared by the respective BOS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT	
Α	PET401	INDUSTRIAL ENGINEERING	2-1-0	3	3	
В	PETXXX	PROGRAMME ELECTIVE II	2-1-0	3	3	
С	PETXXX	OPEN ELECTIVE	2-1-0	3	3	
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	-	
S	PEL411	INDUSTRIAL ENGINEERING LAB	0-0-3	3	2	
Т	PEQ413	SEMINAR	0-0-3	3	2	
U	PED415	PROJECT PHASE I	0-0-6	6	2	
R/M/H	VAC	REMEDIAL/ MINOR/HONOURS COURSE	3-1-0	4*	4	
	TOTAL					

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	PET413	NONCONVENTIONAL MACHINING	2-1-0		
	PET423	ADVANCES IN INDUSTRIAL	2-1-0		
В		AUTOMATION AND ROBOTICS		3	3
	PET4 <mark>33</mark>	TQM	2-1-0		
	PET443	MACHINE DYNAMICS AND DESIGN	2-1-0		
	PET453	FAILURE OF MATERIALS	2-1-0		
	PET463	APPLIED PROBABILITY AND	2-1-0		
		STATISTICS			
	PET473	CFD	2-1-0		

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of PRODUCTION ENGINEERING for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	PET415	INTEGRATED PRODUCT	2-1-0		
		DEVELOPMENT			
	PET425	CONTEMPORARY MATERIALS	2-1-0		
	PET435	FLIGHT AGAINST GRAVITY	2-1-0		
	PET445	TQM	2-1-0	3	3
С	PET455	ADDITIVE MANUFACTURING	2-1-0		

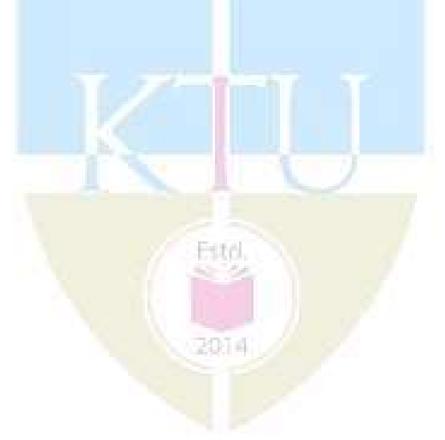
NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of internal members comprising three senior faculty members based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50Attendance: 10Guide: 20Technical Content of the Report: 30Presentation: 40

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Production Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;
 - > Working out a preliminary Approach to the Problem relating to the assigned

topic;


- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;

Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	PET402	OPERATIONS MANAGEMENT	2-1-0	3	3
В	PETXXX	PROGRAMME ELECTIVE III	2-1-0	3	3
С	PETXXX	PROGRAMME ELECTIVE IV	2-1-0	3	3
D	PETXXX	PROGRAMME ELECTIVE V	2-1-0	3	3
Т	PET404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1
U	PED416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/ MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	PET414	ADDITIVE MANUFACTURING	2-1-0		
	PET424	MODELLING AND ANALYSIS OF	2-1-0		
В		MANUFACTURING SYSTEMS	3	3	
	PET434	LEAN AND AGILE MANUFACTURING	2-1-0		
	PET444	PRODUCTION ENGINEERING TOOLING	2-1-0		
	PET454	ENERGY MATERIALS	2-1-0		
	PET464	TIME SERIES ANALYSIS.	2-1-0]	
	PET474	HVAC SYSTEMS	<mark>2-1-</mark> 0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	PET416	INTELLIGENT MANUFACTURING SYSTEMS	2-1-0		
C	PET426	ADVANCED MACHINE CONTROLS	2-1-0	3	3
	PET436	ERP	2-1-0		
	PET446	MACHINE TOOL DESIGN	2-1-0		
	PET456	ADVANCED MATERIALS	2-1-0		
	PET466	MULTIVARIATE DATA ANALYSIS.	2-1-0		
	PET476	ENERGY MANAGEMENT	2-1-0]	

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	PET418	MAINTENANCE AND RELIABILITY ENGINEERING	2-1-0		
	PET428	INTEGRATED MANUFACTURING	2-1-0		
		SYSTEMS			
	PET438	MARKETING MANAGEMENT	2-1-0	100011	
D	PET448	DESIGN FOR MANUFACTURE	2-1-0	3	3
	PET458	PROCESSING OF ADVANCED MATERIALS	2-1-0	άL.	
	PET468	ADVANCED OPTIMIZATION TECHNIQUES	2-1-0		
	PET478	RENEWABLE ENERGY	2-1-0		
		TECHNOLOGIES			

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honorsprogramme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the syllabus mentioned for comprehensive course work in the sixth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. Project Phase II: The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed;

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee
 Total marks: 150, only CIE, minimum required to pass 75
 Guide : 30
 Interim evaluation, 2 times in the semester by the evaluation committee : 50
 Quality of the report evaluated by the above committee : 30
 Final evaluation by a three member committee : 40

(The final evaluation committee comprises Project coordinator, expert from industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card. (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject on the chosen area in S7 or S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8.Students who have registered for B.Tech Minor in QUALITY ENGINEERING Branch can opt to study the courses listed below:

Semester	BASKET I: QUALITY ENGINEERING						
	Course No.	Course Name	HOURS	CREDIT			
S3	PET281	INDUSTRIAL INSPECTION	4	4			
S4	PET282	RELIABILITY ENGINEERING	4	4			
S5	PET381	STATISTICAL QUALITY CONTROL	4	4			
S6	PET382	TOTAL QUALITY MANAGEMENT	4	4			
S7	PED481	MINIPROJECT	4	4			
S8	PED482	MINIPROJECT	4	4			

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

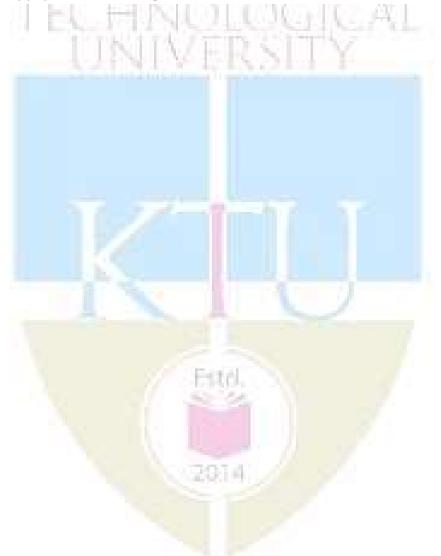
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than

or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in PRODUCTION ENGINEERING** can opt to study the courses listed below.

SEMESTER				
	Course No.	Course Name	HOURS	CREDIT
S4	PET292	PREDICTIVE ANALYTICS	4	4
S5	PET393	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	4	4
S6	PET394	IOT AND CLOUD MANUFACTURING	4	4
S7	PET495	BIG DATA ANALYTICS	4	4
S8	PED496	MINIPROJECT	4	4


INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

• Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.

- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII:B.TECH ROBOTICS AND AUTOMATION

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50					50	1	
Credits Activity	for		2						2	
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1**. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table	1:	Code	for t	the	courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SI.No	Department	Course	SI.No	Department	Course
		Prefix	1.0		Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
	Applied Electronics &	170	D	Instrumentation &	
02	Instrumentation	AE	17	Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	СН	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB
11	Electronics & Biomedical	EB	26	Physics	PH
12	Electronics & Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
		1	1	Robotics and	
14	Humanities	HU	29	Automation	RA
15	Industrial Engg	IE	30	Safety & Fire Engg	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
,	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

estel

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
-	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
В	RAT 201	PROCESSING AND PROPERTIES OF MATERIALS	4-0-0	4	4
С	RAT 203	ELECTRONIC DEVICES AND CIRCUITS	3-1-0	4	4
D	RAT 205	DIGITAL ELECTRONICS	3-1-0	4	4
E	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
1/2	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	RAL 201	MACHINE DRAWING AND SOLID MODELLING LAB	0-0-3	3	2
Т	RAL 203	ELECTRONIC CIRCUITS AND DIGITAL ELECTRONICS LABORATORY	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL		26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	RAT 202	KINEMATICS AND DYNAMICS OF MECHANISMS	3-1-0	4	4
С	RAT 204	MANUFACTURING PROCESSES	3-1-0	4	4
D	RAT 206	MICROCONTROLLERS AND EMBEDDED SYSTEMS	3-1-0	4	4
E ½	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 202	CONSTITUTION OF INDIA	2-0-0	2	
S	RAL 202	MANUFACTURING AND PROTOTYPING LAB	0-0-3	3	2
Т	RAL 204	MICROCONTROLLERS AND EMBEDDED SYSTEMS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

 *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 301	INTRODUCTION TO ROBOTICS	3-1-0	4	4
В	RAT 303	SOLID MECHANICS	3-1-0	4	4
С	RAT 305		3-1-0	4	4
D	RAT 307	CONTROL SYSTEMS	3-1-0	4	4
E 1/2	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
·	HUT 310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN 301	DISASTER MANAGEMENT	2-0-0	2	
S	RAL 331		0-0-3	3	2
Т	RAL 333	ROBOT OPERATING SYSTEM LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	RAT 302	DESIGN OF MACHINE ELEMENTS	3-1-0	4	4
В	RAT 304	ELECTRIC DRIVES AND CONTROL	3-1-0	4	4
C	RAT 306	SIGNALS AND SYSTEMS	3-1-0	4	4
D	RAT XXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
·	HUT 310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	RAT 308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	RAL 332	ROBOTICS LAB	0-0-3	3	2
Т	RAD 334	MINIPROJECT/CORE LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES FILM	L-T-P	HOURS	CREDIT
	RAT 312	SENSORS AND TRANSDUCERS	2-1-0		
	RAT 322	ROBOTIC CONTROL SYSTEMS	2-1-0		
	RAT 332	FLUID POWER AUTOMATION	2-1-0	3	3
D	RAT 342	MECHANICAL MEASUREMENTS AND METROLOGY	2-1-0		
	RAT 352	ENGINEERING OPTIMIZATION	2-1-0		
	RAT 362	COMMUNICATIONS NETWORKS	2-1-0		
	RAT 372	SOFT COMPUTING TECHNIQUES	2-1-0	7	

NOTE:


1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50%

of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing the above listed 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marksSplit up for CIEAttendance: 10Guide: 15Project Report: 10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 401	ALGORITHMS AND DATA STRUCTURES	2-0-2	4	3
В	RAT XXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	RAT XXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN 401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	RAL 411	ELECTRICAL DRIVES AND CONTROL LAB	0-0-3	3	2
Т	RAQ 413	SEMINAR	0-0-3	3	2
U	RAD 415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	2	25/29	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	RAT 413	MOBILE ROBOTICS	2-1-0	17	
	RAT 423	PLC AND DISTRIBUTED CONTROL SYSTEMS	2-1-0	3	3
В	RAT 433	THEORY OF ELASTICITY	2-1-0		
	RAT 443	DESIGNING THE MECHANISMS	2-1-0		
		FOR AUTOMATED MACHINES			
	RAT 453	TRIBOLOGY	2-1-0		
	RAT 463	FINITE ELEMENT METHODS	2-1-0		
	RAT 473	FUNDAMENTALS OF	2-1-0		
		MOMENTUM, HEAT AND MASS			
		TRANSFER			

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of Robotics and Automation for students of other undergraduate branches offered in the college under KTU

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	RAT415	FUNDAMENTALS OF ROBOTICS	2-1-0	- 1	
	RAT425	BASICS OF MOBILE ROBOTICS	2-1-0	Charles .	
С	RAT435	INDUSTRIAL AUTOMATION	2-1-0	3	3
	RAT445	AI FOR ROBOTICS	2-1-0	1	
	and the second s	The C.L. Arthough Landson and The State Street and			

NOTE:

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimu	m required to pass 5
Attendance	: 10
Guide	: 20
Technical Content of the Report	: 30
Presentation	: 40

3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Robotics and Automation, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected

to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

- Survey and study of published literature on the assigned topic;
- Preparing an Action Plan for conducting the investigation, including team work;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50

Guide	:30
Interim evaluation by the evaluation committee	:20
Final Seminar	:30
	20

The report evaluated by the evaluation committee :20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 402	AI AND MACHINE LEARNING	2-1-0	3	3
В	RAT XXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	RAT XXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	RAT XXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	RAT 404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	RAD 416	PROJECT PHASE II	0-0- 12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	RAT 414	MACHINE VISION	2-1-0		
	RAT 424	BEHAVIORAL ROBOTICS	2-1-0		
	RAT 434	INDUSTRIAL MANIPULATORS	2-1-0	3	3
В	RAT 444	ROBOT MOTION PLANNING	2-1-0		
	RAT 454	CNC MACHINES	2-1-0		
	RAT 464	NONLINEAR CONTROL	2-1-0		
	RAT 474	CONTINUUM MECHANICS	2-1-0		
			210		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	RAT 416	DESIGN FOR MANUFACTURING	2-1-0		
		AND ASSEMBLY			
	RAT 426	NATURAL LANGUAGE	2-1-0	3	3
C		PROCESSING			
	RAT 436	DIGITAL CONTROL SYSTEMS	2-1-0		
	RAT 446	PROBABILISTIC ROBOTICS	2-1-0		

RAT 456	INDUSTRY 4.0	2-1-0	
RAT 476	SUPERVISORY CONTROL	2-1-0	

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	RAT 418	MECHATRONIC SYSTEM DESIGN	2-1-0		
	RAT 428	VIBRATION	2-1-0		
	RAT 438	CO-OPERATIVE ROBOTICS	2-1-0	3	3
D	RAT 448	ROBOT NAVIGATION	2-1-0		
	RAT 458	HUMAN-MACHINE INTERFACE	2-1-0	301	
	RAT 468	ADAPTIVE CONTROL	2-1-0	C. Law	
	RAT 478	AI FOR ROBOTICS	2-1-0		

NOTE

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;

: 30

:40

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75 Guide

Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three member committee

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in ROBOTICS AND AUTOMATION can opt to study the courses listed below:

Semester	BASKET I						
	Course No.	Course Name	HOURS	CREDIT			
S3	RAT281	BASICS OF ROBOTICS	4	4			
S4	RAT 28 <mark>2</mark>	INTRODUCTION TO INDUSTRIAL AUTOMATION	4	4			
S5	RAT 381	AI AND MACHINE LEARNING FOR ROBOTICS	4	4			
S6	RAT 382	INTRODUCTION TO MOBILE ROBOTICS	4	4			
S7	RAD 481	MINIPROJECT	4	4			
S8	RAD 482	MINIPROJECT	4	4			

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing

ROBOTICS AND AUTOMATION

this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select

only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for **B.Tech Honours in ROBOTICS & AUTOMATION** can opt to study the courses listed below:

	GROUPI						
Seme ster	Course No	Course Name	HOURS	CREDIT			
S4	RAT292	SENSORS AND ACTUATORS FOR ROBOTS	4	4			
S5	RAT393	PLC AND SCADA	4	4			
S6	RAT394	ADVANCED CONTROL FOR ROBOTICS	4	4			
S7	RAT495	FIELD ROBOTICS	4	4			
S8	RAD496	MINI PROJECT	4	4			

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH SAFETY & FIRE ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	1	62
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50	1			1	50		
Credits Activity	for		2						2	
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

1510.1

Table 1: Code for the courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix	
	こみらますホートみ うまち	1751	1.7	1.5. A.H		
01	Aeronautical Engg	AO	16	Information Technology	IT	
02	Applied Electronics & Instrumentation	AE	17	Instrumentation & Control	IC	
03	Automobile	AU	18	Mandatory Courses	MC	
04	Biomedical Engg	BM	19	Mathematics	MA	
05	Biotechnology	BT	20	Mechanical Engg	ME	
06	Chemical Engg	СН	21	Mechatronics	MR	
07	Chemistry	CY	22	Metallurgy	MT	
08	Civil Engg	CE	23	Mechanical (Auto)	MU	
09	Computer Science	CS	24	Mechanical(Prod)	MP	
10	Electrical & Electronics	EE	25	Naval & Ship Building	SB	
11	Electronics & Biomedical	EB	26	Physics	PH	
12	Electronics & Communication	EC	27	Polymer Engg	РО	
13	Food Technology	FT_	28	Production Engg	PE	
14	Humanities	HU	29	Robotics and Automation	RA	
15	Industrial Engg	IE	30	Saf <mark>ety & Fire Engg</mark>	FS	

Table 2: Departments and their codes

2014

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICSB	3-1-0	4	4
·	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
	1	TOTAL		28/29	21

NOTE:

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
	1000	A REAL TO THE REAL	1	COLL.	
В	FST201	FIRE ENGINEERING FUNDAMENTALS	3-1-0	4	4
С	FST203	CHEMICAL PROCESS PRINCIPLES	3-1-0	4	4
D	FST205	PRINCIPLES OF SAFETY	4-0-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	FSL201	CHEMICAL ENGINEERING LAB	0-0-3	3	2
Т	FSL203	SAFETY ENGINEERING LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL		26/30	22/26

NOTE:

1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.

Estd.

 *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3-1-0	4	4
В	FST202	FLUID MECHANICS AND FIRE HYDRAULICS CALCULATION	3-1-0	4	4
С	FST204	TRANSFER OPERATIONS IN CHEMICAL ENGINEERING	3-1-0	4	4
D	FST206	ELECTRICAL TECHNOLOGY AND SAFETY	4-0-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	FSL202	HEAT AND MASS TRANSFER LAB	0-0-3	3	2
Т	FSL204	FLUID MECHANICS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	26/30	22/26

NOTE:

Estel.

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDI T
А	FST301	PLANNING AND DESIGN OF FIRE PROTECTION SYSTEMS	3-1-0	4	4
В	FST303	SAFETY IN MANUFACTURING	3-1-0	4	4
С	FST305	OCCUPATIONAL HEALTH AND FIRST	4-0-0	4	4
D	FST307	SAFETY IN CONSTRUCTION INDUSTRY	4-0-0	4	4
E	HUT300	INDUSTRIAL ECONOMICS & FOREIGN	3-0-0	3	3
1/2		TRADE			
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	FSL331	MACHINE TOOL LAB	0-0-3	3	2
Т	FSL333	FIRE ENGINEERING AND FIRST AID LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	27/31	23/27

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade-in S5 and Management for Engineers in S6 and vice versa.

2914

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	FST302	HAZARD IDENTIFICATION AND RISK ASSESSMENT	3-1-0	4	4
В	FST304	STRUCTURAL FIRE SAFETY	3-1-0	4	4
С	FST306	PROCESS SAFETY AND CONTROL ENGINEERING	3-1-0	4	4
D	FSTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FORIEGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	FST308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	FSL332	ENVIRONMENTAL ENGINEERING AND INDUSTRIAL HYGIENE LAB	0-0-3	3	2
Т	FSD334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL	1	25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.	and the second			
	FST312	ENVIRONMENTAL ENGINEERING AND	2-1-0		
		MANAGEMENT			
	FST322	COMPUTATIONAL FLUID DYNAMICS	2-1-0		
D	FST332	BIOMECHANICS AND ERGONOMICS	2-1-0	3	3
	FST342	FAULT DETECTION AND DAIGNOSIS	2-1-0		
	FST352	HEAT TRANSFER COMBUSTION AND	2-1-0		
		EXPLOSION			
	FST362	INDUSTRIAL ECOLOGY	2-1-0		
	FST372	SAFETY IN MINES	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade-in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- Mini project: It is introduced in sixth semester with a specific objective to strengthen the 4. understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marksSplit up for CIEAttendance: 10Guide: 15Project Report: 10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) :40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	FST401	SAFETY IN PETROLEUM AND PETROCHEMICAL INDUSTRIES	2-1-0	3	3
В	FSTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	FSTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	FSL411	CAD AND COMPUTATIONAL LAB	0-0-3	3	2
Т	FSQ413	SEMINAR	0-0-3	3	2
U	FSD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	5	TOTAL	52	24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FST413	FIRE DYNAMICS	2-1-0		
	FST423	AUTOMOBILE ENGINEERING &	3-0-0		
		SAFETY		3	3
В	FST43 <mark>3</mark>	OHSAS 18000 and ISO 14000	3-0-0		
	FST443	NUCLEAR ENGINEERING AND SAFETY	2-1-0		
	FST453	SAFETY IN POWER PLANT	<mark>3-</mark> 0-0		
		ENGINEERING			
	FST463	SAFETY IN MATERIAL HANDLING	2-1-0		
	FST473	EXPLOSIVE TECHNOLOGY AND SAFETY	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example: The courses listed below are offered by the Department of Safety and Fire Engineering for students of other undergraduate branches offered in the college under KTU

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FST 415	RESPONSIBLE ENGINEERING	3-0-0		
C	FST 425	SAFETY IN CONSTRUCTION INDUSTRY	3-0-0	3	3

TECHNOLOGICAL

- NOTE:
 - *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
 - 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

20

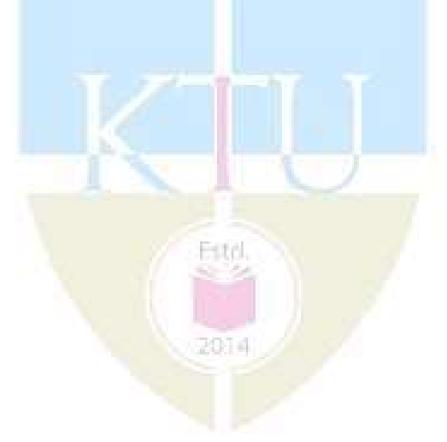
: 30

:40

Total marks: 100, only CIE, minimum required to pass 50

Attendance

Guide


Technical Content of the Report Presentation

- 3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Safety and fire Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:
 - Survey and study of published literature on the assigned topic;
 - Preparing an Action Plan for conducting the investigation, including team work;

- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Block level design documentation
- Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- > Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50	
Guide	: 30
Interim evaluation by the evaluation committee	: 20
Final Seminar	: 30
The report evaluated by the evaluation committee	: 20
The evolvation committee commisses U.D. on a continue f	

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	FST402	HUMAN FACTORS ENGINEERING AND BEHAVIOUR BASED SAFETY	2-1-0	3	3
В	FSTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	FSTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	FSTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	FST404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	FSD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
	FST414	LEGAL ASPECTS OF HSE	3-0-0		
	FST424	FOOD AND BIOSAFETY	2-1-0		
	FST434	NUMERICAL METHODS FOR PROCESS	2-1-0	3	3
В		ENGINEERS			
	FST444	QUALITY ENGINEERING IN PRODUCTION	2-1-0		
		SYSTEM			
	FST454	ENVIRONMENTAL POLLUTION AND	2-1-0		
		CONTROL			
	FST464	MARINE CORROSION AND PREVENTION	2-1-0		
	FST474	FUNDAMENTALS OF NANOSCIENCE	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
	FST416	TRANSPORTATION SYSTEM AND SAFETY	2-1-0		
	FST426	CHEMICAL TECHONOLOGY AND	2-1-0		
		MECHANICAL OPERATIONS		3	3
C	FST436	DOCK SAFETY	2-1-0		
	FST446	RELIABILITY ENGINEERING	2-1-0		

FST456	FIRE MODELLING	2-1-0	
FST466	COMPOSITE MATERIALS	2-1-0	
FST476	SAFETY IN TEXTILE INDUSTRY	2-1-0	

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	FST418	ADVANCED SAFETY ENGINEERING AND MANAGEMENT	2-1-0		
	FST428	FIRE RISK CALCULATIONS	2-1-0	3	3
D	FST438	DRILLING AND STORAGE	2-1-0		
	FST448	TOTAL QUALITY MANAGEMENT	2-1-0		
	FST458	SHIP'S FIRE PREVENTION AND CONTROL	2-1-0		
	FST468	OFFSHORE TECHNOLOGY	2-1-0		
	FST478	SAFETY IN POWDER HANDLING	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phase;

- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75

Guide: 30Interim evaluation, 2 times in the semester by the evaluation committee: 50Quality of the report evaluated by the above committee: 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three member committee :40

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do mini project on the chosen area in S7 or S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in SAFETY & FIRE ENGINEERING Branch can opt to study the courses listed below:

Estd.

Basket I							
Semester	Semester COURSE NO. Course Name						
S3	FST 281	FUNDAMENTALS OF FIRE ENGINEERING	4	4			
S4	FST 282	HAZARD CONTROL IN MANUFACTURING	4	4			
S5	FST 381	OCCUPATIONAL HEALTH AND INDUSTRIAL HYGIENE	4	4			
S6	FST 382	ENVIRONMENTAL ENGINEERING AND MANAGEMENT	4	4			
S7	FSD 481	MINI PROJECT	4	4			
S8	FSD 482	MINI PROJECT	4	4			

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.

(vi) The registration for honours program will commence from semester 4 and the all-academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in SAFETY & FIRE ENGINEERING** can opt to study the courses listed below:

Group I									
Semester	COURSE NO.	Hours	Credit						
S4	FST292	ADVANCES IN FIRE ENGINEERING	4	4					
S5	FST393	INDUSTRIAL NOISE AND VIBRATION	4	4					
		CONTROL							
S6	FST394	MAINTAINABILITY ENGINEERING	4	4					
S7	FST495	EMERGENCY PLANNING AND	4	4					
		MANAGEMENT							
S8	FSD496	MINI PROJECT	4	4					

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

2914

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

• **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

		CATEGORY	L	Т	Ρ	CREDIT	YEAR OF
HUN	LIFE SKILLS						INTRODUCTION
101		MNC	2	0	2		2019

Preamble: Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underly personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Define and Identify different life skills required in personal and professional life
CO 2	Develop an awareness of the self and apply well-defined techniques to cope with emotions
	and stress.
CO 3	Explain the basic mechanics of effective communication and demonstrate these through
	presentations.
CO 4	Take part in group discussions
CO 5	Use appropriate thinking and problem solving techniques to solve new problems
CO 6	Understand the basics of teamwork and leadership

Mapping of course outcomes with program outcomes

\smallsetminus	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	РО	PO
						1 de 1				10	11	12
CO 1					100	2		1	2	2	1	3
CO 2									3			2
CO 3						1			1	3		
CO 4					1.18	12				3		1
CO 5		3	2	1								
CO 6						1			3			

Mark distribution

Total Marks	CIE	ESE	ESE Duration		
100	50	50	2 hours		

Continuous Internal Evaluation Total Marks: 50

Attendance	: 10 marks
Regular assessment	: 15 marks
Series test (one test only, should include first three modules)	: 25 marks

Regular assessment

Group Discussion (Marks: 9)

Create groups of about 6 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation are as follows:

٠	Communication Skills	: 3 marks

- Subject Clarity : 2 marks
- Group Dynamics : 2 marks
- Behaviours & Mannerisms : 2 marks

Presentation Skills (Marks: 6)

Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation are as follows:

- Communication Skills : 2 marks
- Platform Skills : 2 marks
- Subject Clarity/Knowledge : 2 marks

End Semester Examination Total Marks: 50

Time: 2 hrs.

Part A: Short answer question (25 marks)

There will be one question from each MODULE (five questions in total, five marks each). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows:

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

Part B: Case Study (25 marks)

The students will be given a case study with questions at the end. The students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows:

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion

(ix) Answer the question at the end of the case

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. List 'life skills' as identified by WHO
- 2. What do you mean by effective communication?
- 3. What are the essential life skills required by a professional?

Course Outcome 2 (CO2)

- 1. Identify an effective means to deal with workplace stress.
- 2. How can a student apply journaling to stress management?
- 3. What is the PATH method? Describe a situation where this method can be used effectively.

Course Outcome 3(CO3):

- Identify the communication network structure that can be observed in the given situations. Describe them.
 - (a) A group discussion on development.
 - (b) An address from the Principal regarding punctuality.
 - (c) A reporter interviewing a movie star.
 - (d) Discussing the answers of a test with a group of friends.
- 2. Elucidate the importance of non-verbal communication in making a presentation
- 3. Differentiate between kinesics, proxemics, and chronemics with examples.

Course Outcome 4 (CO4):

- 1. How can a participant conclude a group discussion effectively?
- 2. 'Listening skills are essential for effectively participating in a group discussion.' Do you agree? Substantiate your answer.

Course Outcome 5 (CO5):

- 1. Illustrate the creative thinking process with the help of a suitable example
- 2. Translate the following problem from verbal to graphic form and find the solution : *In a quiz, Ananth has 50 points more than Bimal, Chinmay has 60 points less than Ananth, and Dharini is 20 points ahead of Chinmay. What is the difference in points between Bimal and Dharini?*

3. List at least five ways in which the problem "How to increase profit?" can be redefined

Course Outcome 6 (CO6):

- 1. A group of engineers decided to brainstorm a design issue on a new product. Since no one wanted to disagree with the senior members, new ideas were not flowing freely. What group dynamics technique would you suggest to avoid this 'groupthink'? Explain the procedure.
- 2. "A group focuses on individual contribution, while a team must focus on synergy." Explain.
- 3. Identify the type of group formed / constituted in each of the given situations
 - a) A Police Inspector with subordinates reporting to him
 - b) An enquiry committee constituted to investigate a specific incident
 - c) The Accounts Department of a company
 - d) A group of book lovers who meet to talk about reading

Syllabus

Module 1

Overview of Life Skills: Meaning and significance of life skills, Life skills identified by WHO: Selfawareness, Empathy, Critical thinking, Creative thinking, Decision making, problem solving, Effective communication, interpersonal relationship, coping with stress, coping with emotion.

Life skills for professionals: positive thinking, right attitude, attention to detail, having the big picture, learning skills, research skills, perseverance, setting goals and achieving them, helping others, leadership, motivation, self-motivation, and motivating others, personality development, IQ, EQ, and SQ

Module 2

Self-awareness: definition, need for self-awareness; Coping With Stress and Emotions, Human Values, tools and techniques of SA: questionnaires, journaling, reflective questions, meditation, mindfulness, psychometric tests, feedback.

Stress Management: Stress, reasons and effects, identifying stress, stress diaries, the four A's of stress management, techniques, Approaches: action-oriented, emotion-oriented, acceptance-oriented, resilience, Gratitude Training,

Coping with emotions: Identifying and managing emotions, harmful ways of dealing with emotions, PATH method and relaxation techniques.

Morals, Values and Ethics: Integrity, Civic Virtue, Respect for Others, Living Peacefully. Caring, Sharing, Honesty, Courage, Valuing Time, Time management, Co operation, Commitment, Empathy, Self-Confidence, Character, Spirituality, Avoiding Procrastination, Sense of Engineering Ethics.

Module 3

21st century skills: Creativity, Critical Thinking, Collaboration, Problem Solving, Decision Making, Need for Creativity in the 21st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity, Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.

Steps in problem solving: Problem Solving Techniques, Six Thinking Hats, Mind Mapping, Forced Connections. Analytical Thinking, Numeric, symbolic, and graphic reasoning. Scientific temperament and Logical thinking.

Module 4

Group and Team Dynamics: Introduction to Groups: Composition, formation, Cycle, thinking, Clarifying expectations, Problem Solving, Consensus, Dynamics techniques, Group vs Team, Team Dynamics, Virtual Teams. Managing team performance and managing conflicts, Intrapreneurship.

Module 5

Leadership: Leadership framework, entrepreneurial and moral leadership, vision, cultural dimensions. Growing as a leader, turnaround leadership, managing diverse stakeholders, crisis management. Types of Leadership, Traits, Styles, VUCA Leadership, Levels of Leadership, Transactional vs Transformational Leaders, Leadership Grid, Effective Leaders.

Lab Activities

Verbal

Effective communication and Presentation skills.

Different kinds of communication; Flow of communication; Communication networks, Types of barriers; Miscommunication

Introduction to presentations and group discussions.

Learning styles: visual, aural, verbal, kinaesthetic, logical, social, solitary; Previewing, KWL table, active listening, REAP method

Note-taking skills: outlining, non-linear note-taking methods, Cornell notes, three column note taking.

Memory techniques: mnemonics, association, flashcards, keywords, outlines, spider diagrams and mind maps, spaced repetition.

Time management: auditing, identifying time wasters, managing distractions, calendars and checklists; Prioritizing - Goal setting, SMART goals; Productivity tools and apps, Pomodoro technique.

Non Verbal:

Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language, Communication in a multi cultural environment.

Reference Books

- 1. Shiv Khera, You Can Win, Macmillan Books, New York, 2003.
- 2. Barun K. Mitra, "Personality Development & Soft Skills", Oxford Publishers, Third impression, 2017.
- 3. ICT Academy of Kerala, "Life Skills for Engineers", McGraw Hill Education (India) Private Ltd., 2016.
- 4. Caruso, D. R. and Salovey P, "The Emotionally Intelligent Manager: How to Develop and Use the Four Key Emotional Skills of Leadership", John Wiley & Sons, 2004.
- 5. Kalyana, "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd, 2015.
- 6. Larry James, "The First Book of Life Skills"; First Edition, Embassy Books, 2016.
- 7. Shalini Verma, "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company, 2014.
- 8. Daniel Goleman, "Emotional Intelligence"; Bantam, 2006.
- 9. Remesh S., Vishnu R.G., "Life Skills for Engineers", Ridhima Publications, First Edition, 2016.
- 10. Butterfield Jeff, "Soft Skills for Everyone", Cengage Learning India Pvt Ltd; 1 edition, 2011.
- 11. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India; 6 edition, 2015.
- 12. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.

HUN	PROFESSIONAL COMMUNICATION	CATEGORY	L	Т	Ρ	CREDIT
102		MNC	2	0	2	

Preamble: Clear, precise, and effective communication has become a *sine qua non* in today's information-driven world given its interdependencies and seamless connectivity. Any aspiring professional cannot but master the key elements of such communication. The objective of this course is to equip students with the necessary skills to listen, read, write, and speak so as to comprehend and successfully convey any idea, technical or otherwise, as well as give them the necessary polish to become persuasive communicators.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop vocabulary and language skills relevant to engineering as a profession						
CO 2	Analyze, interpret and effectively summarize a variety of textual content						
CO 3	Create effective technical presentations						
CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at						
	generalizations/consensus						
CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs						
CO 6	Create professional and technical documents that are clear and adhering to all the						
	necessary conventions						

Mapping of course outcomes with program outcomes

\square	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	РО
						-				10	11	12
CO 1					1.1	C				3		2
CO 2					12	1.1.2				1		3
CO 3						1			1	3		
CO 4										3		1
CO 5		1				-			2	3		
CO 6	1					1			1	3		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	50	50	2 hours

Continuous Internal Evaluation

Total N	/larks: 50		
Attendance			: 10 marks
Regular assessment			: 25 marks
Series	test (one test o	nly, should include verbal aptitude for placeme	nt and higher studies, this test
will be conducted for 50 marks and reduced to 15)			: 15 marks
Regula	r assessment		
Project report presentation and Technical presentation through PPT			: 7.5 marks
Listening Test			: 5 marks
Group discussion/mock job interview			: 7.5 marks
Resume submission			: 5 marks
Total N	mester Examina Aarks: 50, Time : Level Assessm	: 2 hrs.	
Course	Outcome 1 (CO	D1):	
1.	 List down the ways in which gestures affect verbal communication. 		
2.	Match the words and meanings		
	Ambiguous	promotion	
	Bona fide	referring to whole	
	Holistic	not clear	
	Exaltation	genuine	

3. Expand the following Compound Nouns - a. Water supply. b. Object recognition. c. Steam turbine

Course Outcome 2 (CO2)

1. Read the passage below and prepare notes:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry. What is best in mathematics deserves not merely to be learnt as a task, but to be assimilated as a part of daily thought, and brought again and again before the mind with everrenewed encouragement. Real life is, to most men, a long second-best, a perpetual compromise between the ideal and the possible; but the world of pure reason knows no compromise, no practical limitations, no barrier to the creative activity embodying in splendid edifices the passionate aspiration after the perfect from which all great work springs. Remote from human passions, remote even from the pitiful facts of nature, the generations have gradually created an ordered cosmos, where pure thought can dwell as in its natural home, and where one, at least, of our nobler impulses can escape from the dreary exile of the actual world.

So little, however, have mathematicians aimed at beauty, that hardly anything in their work has had this conscious purpose. Much, owing to irrepressible instincts, which were better than avowed

beliefs, has been moulded by an unconscious taste; but much also has been spoilt by false notions of what was fitting. The characteristic excellence of mathematics is only to be found where the reasoning is rigidly logical: the rules of logic are to mathematics what those of structure are to architecture. In the most beautiful work, a chain of argument is presented in which every link is important on its own account, in which there is an air of ease and lucidity throughout, and the premises achieve more than would have been thought possible, by means which appear natural and inevitable. Literature embodies what is general in particular circumstances whose universal significance shines through their individual dress; but mathematics endeavours to present whatever is most general in its purity, without any irrelevant trappings.

How should the teaching of mathematics be conducted so as to communicate to the learner as much as possible of this high ideal? Here experience must, in a great measure, be our guide; but some maxims may result from our consideration of the ultimate purpose to be achieved.

- From "On the teaching of mathematics" Bertrand Russell
- 2. Enumerate the advantages and disadvantages of speed reading. Discuss how it can impact comprehension.

Course Outcome 3(CO3):

- 1. What are the key elements of a successful presentation?
- 2. Elucidate the importance of non-verbal communication in making a presentation
- **3.** List out the key components in a technical presentation.

Course Outcome 4 (CO4):

- 1. Discuss: 'In today's world, being a good listener is more important than being a good Speaker.'
- 2. Listen to a video/live group discussion on a particular topic, and prepare a brief summary of the proceedings.
- 3. List the do's and don'ts in a group discussion.

Course Outcome 5 (CO5):

- 1. Watch a movie clip and write the subtitles for the dialogue.
- 2. What do you mean by barriers to effective listening? List ways to overcome each of these.
- **3.** What are the different types of interviews? How are listening skills particularly important in Skype/telephonic interviews?

Course Outcome 6 (CO6):

- **1.** Explain the basic structure of a technical report.
- You have been offered an internship in a much sought-after aerospace company and are very excited about it. However, the dates clash with your series tests. Write a letter to the Manager – University Relations of the company asking them if they can change the dates to coincide with your vacation.
- 3. You work in a well-reputed aerospace company as Manager University Relations. You are in charge of offering internships. A student has sent you a letter requesting you to change the dates allotted to him since he has series exams at that time. But there are no vacancies available during the period he has requested for. Compose an e-mail informing him of this and suggest that he try to arrange the matter with his college.

Syllabus

Module 1

Use of language in communication: Significance of technical communication Vocabulary Development: technical vocabulary, vocabulary used in formal letters/emails and reports, sequence words, misspelled words, compound words, finding suitable synonyms, paraphrasing, verbal analogies. Language Development: subject-verb agreement, personal passive voice, numerical adjectives, embedded sentences, clauses, conditionals, reported speech, active/passive voice.

Technology-based communication: Effective email messages, slide presentations, editing skills using software. Modern day research and study skills: search engines, repositories, forums such as Git Hub, Stack Exchange, OSS communities (MOOC, SWAYAM, NPTEL), and Quora; Plagiarism

Module 2

Reading, Comprehension, and Summarizing: Reading styles, speed, valuation, critical reading, reading and comprehending shorter and longer technical articles from journals, newspapers, identifying the various transitions in a text, SQ3R method, PQRST method, speed reading. Comprehension: techniques, understanding textbooks, marking and underlining, Note-taking: recognizing non-verbal cues.

Module 3

Oral Presentation: Voice modulation, tone, describing a process, Presentation Skills: Oral presentation and public speaking skills, business presentations, Preparation: organizing the material, self-Introduction, introducing the topic, answering questions, individual presentation practice, presenting visuals effectively.

Debate and Group Discussions: introduction to Group Discussion (GD), differences between GD and debate; participating GD, understanding GD, brainstorming the topic, questioning and clarifying, GD strategies, activities to improve GD skills

Module 4

Listening and Interview Skills Listening: Active and Passive listening, listening: for general content, to fill up information, intensive listening, for specific information, to answer, and to understand. Developing effective listening skills, barriers to effective listening, listening to longer technical talks, listening to classroom lectures, talks on engineering /technology, listening to documentaries and making notes, TED talks.

Interview Skills: types of interviews, successful interviews, interview etiquette, dress code, body language, telephone/online (skype) interviews, one-to-one interview & panel interview, FAQs related to job interviews

Module 5

Formal writing: Technical Writing: differences between technical and literary style. Letter Writing (formal, informal and semi formal), Job applications, Minute preparation, CV preparation (differences between Bio-Data, CV and Resume), and Reports. Elements of style, Common Errors in Writing: describing a process, use of sequence words, Statements of Purpose, Instructions, Checklists.

Analytical and issue-based Essays and Report Writing: basics of report writing; Referencing Style (IEEE Format), structure of a report; types of reports, references, bibliography.

Lab Activities

Written: Letter writing, CV writing, Attending a meeting and Minute Preparation, Vocabulary Building

Spoken: Phonetics, MMFS (Multimedia Feedback System), Mirroring, Elevator Pitch, telephone etiquette, qualities of a good presentation with emphasis on body language and use of visual aids. **Listening:** Exercises based on audio materials like radio and podcasts. Listening to Song. practice and exercises.

Reading: Speed Reading, Reading with the help of Audio Visual Aids, Reading Comprehension Skills **Mock interview and Debate/Group Discussion:** concepts, types, Do's and don'ts- intensive practice

Reference Books

- 1. English for Engineers and Technologists (Combined edition, Vol. 1 and 2), Orient Blackswan 2010.
- Meenakshi Raman and Sangeetha Sharma, "Technical Communication: Principles and Practice", 2nd Edition, Oxford University Press, 2011
- 3. Stephen E. Lucas, "The Art of Public Speaking", 10th Edition; McGraw Hill Education, 2012.
- 4. Ashraf Rizvi, "Effective Technical Communication", 2nd Edition, McGraw Hill Education, 2017.
- 5. William Strunk Jr. & E.B. White, "The Elements of Style", 4th Edition, Pearson, 1999.
- 6. David F. Beer and David McMurrey, Guide to writing as an Engineer, John Willey. New York, 2004.
- 7. Goodheart-Willcox, "Professional Communication", First Edition, 2017.
- Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India, 6 edition, 2015.
- 9. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.
- 10. Anand Ganguly, "Success in Interview", RPH, 5th Edition, 2016.
- 11. Raman Sharma, "Technical Communications", Oxford Publication, London, 2004.